Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Dec;75(12):5831–5835. doi: 10.1073/pnas.75.12.5831

Properties of muscarinic acetylcholine receptors in heart cell cultures

Jonas B Galper 1, Thomas W Smith 1
PMCID: PMC393069  PMID: 282605

Abstract

The binding of acetylcholine to receptors in the intact heart causes a decrease in the frequency (chronotropic effect) and force (ionotropic effect) of contraction. The studies reported here demonstrate a chronotropic response of cultured embryonic chicken heart cells to the muscarinic agonist carbamoylcholine. This response is markedly decreased after a 3-hr incubation with 0.1 mM carbamoylcholine. In order to determine whether agonist-induced alterations in muscarinic receptors were responsible for this decrease, we studied the effects of incubation with carbamoylcholine on the binding of the 3H-labeled muscarinic antagonist quinuclidinyl benzilate (QNB) to homogenates of heart cell cultures. [3H]QNB binding to homogenates of cultures of embryonic hearts of chicks 9 days in ovo was characterized and shown to have properties similar to those of muscarinic receptors in intact hearts. Binding was both specific and saturable. [3H]QNB was displaced by muscarinic agonists and antagonists in concentrations consistent with their known potency. Binding was poorly inhibited by the nicotinic antagonist D-tubocurarine. Kinetic analysis of the binding of QNB by muscarinic receptors showed that initially the reaction proceeds by formation of a rapidly reversible complex with a Kd of 1.8 nM, which is converted to a slowly reversible form. These properties of muscarinic receptors in heart cell cultures are strikingly similar to those observed in homogenates of intact hearts. Homogenates of heart cell cultures bound 84 ± 6 fmol (mean ± SD) of QNB per mg of protein. The number of receptors remained stable from day 4 to day 8 in culture. Incubation of cultures with 0.1 mM carbamoylcholine for 3 hr decreased QNB binding by 55%, to 38 ± 5 fmol/mg protein. When cell cultures were first homogenized and then incubated with carbamoylcholine, no decrease in QNB binding sites could be detected. Thus, incubation with carbamoylcholine causes loss of muscarinic binding sites as well as decreased physiologic responsiveness to muscarinic agonists.

Keywords: quinuclidinyl benzilate binding, desensitization, hormone receptor regulation

Full text

PDF
5831

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birdsall N. J., Burgen A. S., Hiley C. R., Hulme E. C. Binding of agonists and antagonists to muscarinic receptors. J Supramol Struct. 1976;4(3):367–371. doi: 10.1002/jss.400040307. [DOI] [PubMed] [Google Scholar]
  2. Boder G. B., Johnson I. S. Comparative effects of some cardioactive agents on automaticity of cultured heart cells. J Mol Cell Cardiol. 1972 Oct;4(5):453–463. doi: 10.1016/0022-2828(72)90102-2. [DOI] [PubMed] [Google Scholar]
  3. Cavey D., Vincent J. P., Làzdunski M. The muscarinic receptor of heart cell membranes. Association with agonists, antagonists and antiarrhythmic agents. FEBS Lett. 1977 Dec 1;84(1):110–114. doi: 10.1016/0014-5793(77)81068-5. [DOI] [PubMed] [Google Scholar]
  4. DeHann R. L. Regulation of spontaneous activity and growth of embryonic chick heart cells in tissue culture. Dev Biol. 1967 Sep;16(3):216–249. doi: 10.1016/0012-1606(67)90025-5. [DOI] [PubMed] [Google Scholar]
  5. Ertel R. J., Clarke D. E., Chao J. C., Franke F. R. Autonomic receptor mechanisms in embryonic chick myocardial cell cultures. J Pharmacol Exp Ther. 1971 Jul;178(1):73–80. [PubMed] [Google Scholar]
  6. Fields J. Z., Roeske W. R., Morkin E., Yamamura H. I. Cardiac muscarinic cholinergic receptors. Biochemical identification and characterization. J Biol Chem. 1978 May 10;253(9):3251–3258. [PubMed] [Google Scholar]
  7. Galper J. B., Klein W., Catterall W. A. Muscarinic acetylcholine receptors in developing chick heart. J Biol Chem. 1977 Dec 10;252(23):8692–8699. [PubMed] [Google Scholar]
  8. George W. J., Polson J. B., O'Toole A. G., Goldberg N. D. Elevation of guanosine 3',5'-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci U S A. 1970 Jun;66(2):398–403. doi: 10.1073/pnas.66.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greengard P. Possible role for cyclic nucleotides and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature. 1976 Mar 11;260(5547):101–108. doi: 10.1038/260101a0. [DOI] [PubMed] [Google Scholar]
  10. Hermsmeyer K., Robinson R. B. High sensitivity of cultured cardiac muscle cells to autonomic agents. Am J Physiol. 1977 Nov;233(5):C172–C179. doi: 10.1152/ajpcell.1977.233.5.C172. [DOI] [PubMed] [Google Scholar]
  11. Kahn C. R. Membrane receptors for hormones and neurotransmitters. J Cell Biol. 1976 Aug;70(2 Pt 1):261–286. doi: 10.1083/jcb.70.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kebabian J. W., Zatz M., Romero J. A., Axelrod J. Rapid changes in rat pineal beta-adrenergic receptor: alterations in l-(3H)alprenolol binding and adenylate cyclase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3735–3739. doi: 10.1073/pnas.72.9.3735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lane M. A., Sastre A., Law M., Salpeter M. M. Cholinergic and adrenergic receptors on mouse cardiocytes in vitro. Dev Biol. 1977 Jun;57(2):254–269. doi: 10.1016/0012-1606(77)90213-5. [DOI] [PubMed] [Google Scholar]
  15. Lefkowitz R. J., Mullikin D., Wood C. L., Gore T. B., Mukherjee C. Regulation of prostaglandin receptors by prostaglandins and guanine nucleotides in frog erythrocytes. J Biol Chem. 1977 Aug 10;252(15):5295–5303. [PubMed] [Google Scholar]
  16. Mukherjee C., Caron M. G., Lefkowitz R. J. Catecholamine-induced subsensitivity of adenylate cyclase associated with loss of beta-adrenergic receptor binding sites. Proc Natl Acad Sci U S A. 1975 May;72(5):1945–1949. doi: 10.1073/pnas.72.5.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Richelson E. Desensitisation of muscarinic receptor-mediated cyclic GMP formation by cultured nerve cells. Nature. 1978 Mar 23;272(5651):366–368. doi: 10.1038/272366a0. [DOI] [PubMed] [Google Scholar]
  18. Sperelakis N., Lehmkuhl D. Insensitivity of cultured chick heart cells to autonomic agents and tetrodotoxin. Am J Physiol. 1965 Oct;209(4):693–698. doi: 10.1152/ajplegacy.1965.209.4.693. [DOI] [PubMed] [Google Scholar]
  19. Sugiyama H., Daniels M. P., Nirenberg M. Muscarinic acetylcholine receptors of the developing retina. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5524–5528. doi: 10.1073/pnas.74.12.5524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weiland G., Georgia B., Lappi S., Chignell C. F., Taylor P. Kinetics of agonist-mediated transitions in state of the cholinergic receptor. J Biol Chem. 1977 Nov 10;252(21):7648–7656. [PubMed] [Google Scholar]
  21. Williams L. T., Lefkowitz R. J. Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the beta-adrenergic receptor. J Biol Chem. 1977 Oct 25;252(20):7207–7213. [PubMed] [Google Scholar]
  22. Yamamura H. I., Snyder S. H. Muscarinic cholinergic binding in rat brain. Proc Natl Acad Sci U S A. 1974 May;71(5):1725–1729. doi: 10.1073/pnas.71.5.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Young J. M. Desensitisation and agonist binding to cholinergic receptors in intestinal smooth muscle. FEBS Lett. 1974 Sep 15;46(1):354–356. doi: 10.1016/0014-5793(74)80405-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES