Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043

A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug.

P B Lazarow, C De Duve
PMCID: PMC430444  PMID: 180535

Abstract

Purified rat liver peroxisomes contain a cyanide-insensitive fatty acyl-CoA oxidizing system that uses O2 and NAD as electron acceptors. The system was detected by the ability of added palmitoyl-CoA to elicit O2 consumption, H2O2 production, and O2-dependent NAD reduction. The activity of this system is increased approximately one order of magnitude in rats treated with clofibrate, a hypolipidemic drug known to cause peroxisomal proliferation.

Full text

PDF
2043

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AZARNOFF D. L., TUCKER D. R., BARR G. A. STUDIES WITH ETHYL CHLOROPHENOXYISOBUTYRATE (CLOFIBRATE). Metabolism. 1965 Sep;14:959–965. doi: 10.1016/0026-0495(65)90111-3. [DOI] [PubMed] [Google Scholar]
  2. Baudhuin P., Beaufay H., De Duve C. Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparations enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase. J Cell Biol. 1965 Jul;26(1):219–243. doi: 10.1083/jcb.26.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beevers H. Glyoxysomes of castor bean endosperm and their relation to gluconeogenesis. Ann N Y Acad Sci. 1969 Dec 19;168(2):313–324. doi: 10.1111/j.1749-6632.1969.tb43118.x. [DOI] [PubMed] [Google Scholar]
  4. Cooper T. G., Beevers H. Beta oxidation in glyoxysomes from castor bean endosperm. J Biol Chem. 1969 Jul 10;244(13):3514–3520. [PubMed] [Google Scholar]
  5. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  6. De Duve C. Evolution of the peroxisome. Ann N Y Acad Sci. 1969 Dec 19;168(2):369–381. doi: 10.1111/j.1749-6632.1969.tb43124.x. [DOI] [PubMed] [Google Scholar]
  7. Goldenberg H., Hüttinger M., Kampfer P., Kramar R., Pavelka M. Effect of clofibrate application on morphology and enzyme content of liver peroxisomes. Histochemistry. 1976 Feb 26;46(3):189–196. doi: 10.1007/BF02462782. [DOI] [PubMed] [Google Scholar]
  8. HELLMAN L., ZUMOFF B., KESSLER G., KARA E., RUBIN I. L., ROSENFELD R. S. REDUCTION OF CHOLESTEROL AND LIPIDS IN MAN BY ETHYL P-CHLOROPHENOXYISOBUTYRATE. Ann Intern Med. 1963 Oct;59:477–494. doi: 10.7326/0003-4819-59-4-477. [DOI] [PubMed] [Google Scholar]
  9. Hayashi H., Suga T., Ninobe S. Studies on peroxisomes. V. Effect of ethyl p-chlorophenoxyisobutyrate on the centrifugal behavior of rat liver peroxisomes. J Biochem. 1975 Jun;77(6):1199–1204. [PubMed] [Google Scholar]
  10. Hess R., Stäubli W., Riess W. Nature of the hepatomegalic effect produced by ethyl-chlorophenoxy-isobutyrate in the rat. Nature. 1965 Nov 27;208(5013):856–858. doi: 10.1038/208856a0. [DOI] [PubMed] [Google Scholar]
  11. Lazarow P. B., de Duve C. The synthesis and turnover of rat liver peroxisomes. V. Intracellular pathway of catalase synthesis. J Cell Biol. 1973 Nov;59(2 Pt 1):507–524. doi: 10.1083/jcb.59.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leighton F., Coloma L., Koenig C. Structure, composition, physical properties, and turnover of proliferated peroxisomes. A study of the trophic effects of Su-13437 on rat liver. J Cell Biol. 1975 Nov;67(2PT1):281–309. doi: 10.1083/jcb.67.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leighton F., Poole B., Lazarow P. B., De Duve C. The synthesis and turnover of rat liver peroxisomes. I. Fractionation of peroxisome proteins. J Cell Biol. 1969 May;41(2):521–535. doi: 10.1083/jcb.41.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Markwell M. A., McGroarty E. J., Bieber L. L., Tolbert N. E. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem. 1973 May 25;248(10):3426–3432. [PubMed] [Google Scholar]
  16. Moody D. E., Reddy J. K. Increase in hepatic carnitine acetyltransferase activity associated with peroxisomal (microbody) proliferation induced by the hypolipidemic drugs clofibrate, nafenopin, and methyl clofenapate. Res Commun Chem Pathol Pharmacol. 1974 Nov;9(3):501–510. [PubMed] [Google Scholar]
  17. Novikoff A. B., Novikoff P. M., Davis C., Quintana N. Studies on microperoxisomes. II. A cytochemical method for light and electron microscopy. J Histochem Cytochem. 1972 Dec;20(12):1006–1023. doi: 10.1177/20.12.1006. [DOI] [PubMed] [Google Scholar]
  18. OLIVER M. F. FURTHER OBSERVATIONS ON THE EFFECTS OF ATROMID AND OF ETHYL CHLOROPHENOXYISOBUTYRATE ON SERUM LIPID LEVELS. J Atheroscler Res. 1963 Sep-Dec;3:427–444. doi: 10.1016/s0368-1319(63)80023-x. [DOI] [PubMed] [Google Scholar]
  19. Reddy J. K., Krishnakantha T. P. Hepatic peroxisome proliferation: induction by two novel compounds structurally unrelated to clofibrate. Science. 1975 Nov 21;190(4216):787–789. doi: 10.1126/science.1198095. [DOI] [PubMed] [Google Scholar]
  20. Svoboda D. J., Azarnoff D. L. Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol. 1966 Aug;30(2):442–450. doi: 10.1083/jcb.30.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Svoboda D., Azarnoff D., Reddy J. Microbodies in experimentally altered cells. II. The relationship of microbody proliferation to endocrine glands. J Cell Biol. 1969 Mar;40(3):734–746. doi: 10.1083/jcb.40.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Svoboda D., Grady H., Azarnoff D. Microbodies in experimentally altered cells. J Cell Biol. 1967 Oct;35(1):127–152. doi: 10.1083/jcb.35.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. THORP J. M., WARING W. S. Modification of metabolism and distribution of lipids by ethyl chlorophenoxyisobutyrate. Nature. 1962 Jun 9;194:948–949. doi: 10.1038/194948a0. [DOI] [PubMed] [Google Scholar]
  24. VAN DEN BOSCH J., EVRARD E., BILLIAU A., DE SOMER P., JOOSSENS J. V. The influence of a new p-tert-octylphenol derivative on the clearing factor and on the plasma lipids of rabbits. J Atheroscler Res. 1961 Mar-Apr;1:148–162. doi: 10.1016/s0368-1319(61)80044-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES