Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1977 Apr;74(4):1383–1387. doi: 10.1073/pnas.74.4.1383

Dissociation and reassociation of immobilized porphobilinogen synthase: use of immobilized subunits for enzyme isolation.

D Gurne, J Chen, D Shemin
PMCID: PMC430767  PMID: 266180

Abstract

The dissociation and association of an immobilized preparation of the octameric enzyme porphobilinogen synthase [5-aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing), EC 4.2.1.24] is described. On treatment of the immobilized preparation with 4 M urea, four subunits per octamer are removed which can be reassociated into a soluble octameric enzyme. The tetrameric bound residual protein can also be reassembled into an octameric structure, with the same initial enzyme activity, by exposing the residual bound protein to a soluble pure enzyme preparation or to a crude liver extract in the presence of urea. The dissociation of the reconstituted bound enzyme releases subunits that again can be reassembled into a soluble octameric pure protein even when the crude liver preparation is used as the donor of the subunits. Thus, a pure enzyme can be isolated in a reassociation-dissociation cycle. The use of immobilized preparations of oligomeric proteins is considered for intra- and interspecies hybridization studies and for the ready preparation of purified enzyme preparations from different species and is suggested as a model for study of the formation of an oligomeric enzyme in the presence of other polypeptides.

Full text

PDF
1383

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker W. W., Mintz B. Subunit structure and gene control of mouse NADP-malate dehydrogenase. Biochem Genet. 1969 Jan;2(4):351–360. doi: 10.1007/BF01458495. [DOI] [PubMed] [Google Scholar]
  2. Chan W. W. Matrix-bound protein subunits. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1198–1204. doi: 10.1016/0006-291x(70)90213-5. [DOI] [PubMed] [Google Scholar]
  3. Chan W. W. Studies on protein subunits. V. Specific interaction between matrix-bound subunits of aldolase and soluble aldolase subunits. Can J Biochem. 1973 Sep;51(9):1240–1247. doi: 10.1139/o73-164. [DOI] [PubMed] [Google Scholar]
  4. Cho I. C., Swaisgood H. E. The reactivation of an unfolded subunit enzyme covalently linked to a solid surface. Biochim Biophys Acta. 1972 Feb 28;258(2):675–679. doi: 10.1016/0005-2744(72)90260-4. [DOI] [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. Gibbons I., Schachman H. K. A method for the separation of hybrids of chromatographically identical oligomeric proteins. Use of 3,4,5,6-tetrahydrophthaloyl groups as a reversible "chromatographic handle". Biochemistry. 1976 Jan 13;15(1):52–60. doi: 10.1021/bi00646a009. [DOI] [PubMed] [Google Scholar]
  7. Gurne D., Shemin D. Synthesis of the pyrrole porphobilinogen by sepharose-linked -aminolevulinic acid dehydratase. Science. 1973 Jun 15;180(4091):1188–1190. doi: 10.1126/science.180.4091.1188. [DOI] [PubMed] [Google Scholar]
  8. Ikeda S., Fukui S. Studies of the activity of subunits of aspartate 4-decarboxylase immobilized on sepharose. Eur J Biochem. 1974 Aug 1;46(3):553–558. doi: 10.1111/j.1432-1033.1974.tb03649.x. [DOI] [PubMed] [Google Scholar]
  9. Kaplan N. O. Nature of multiple molecular forms of enzymes. Ann N Y Acad Sci. 1968 Jun 14;151(1):382–399. doi: 10.1111/j.1749-6632.1968.tb11902.x. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Markert C. L. The molecular basis for isozymes. Ann N Y Acad Sci. 1968 Jun 14;151(1):14–40. doi: 10.1111/j.1749-6632.1968.tb11876.x. [DOI] [PubMed] [Google Scholar]
  12. Meighen E. A., Schachman H. K. Hybridization of native and chemically modified enzymes. I. Development of a general method and its application to the study of the subunit structure of aldolase. Biochemistry. 1970 Mar 3;9(5):1163–1176. doi: 10.1021/bi00807a017. [DOI] [PubMed] [Google Scholar]
  13. Nandi D. L., Baker-Cohen K. F., Shemin D. Delta-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. J Biol Chem. 1968 Mar 25;243(6):1224–1230. [PubMed] [Google Scholar]
  14. Nandi D. L., Shemin D. Delta-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. II. Association to polymers and dissociation to subunits. J Biol Chem. 1968 Mar 25;243(6):1231–1235. [PubMed] [Google Scholar]
  15. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  16. Tate S. S., Meister A. Regulation and subunit structure of aspartate beta-decarboxylase. Studies on the enzymes from Alcaligenes faecalis and Pseudomonas dacunhae. Biochemistry. 1970 Jun 23;9(13):2626–2632. doi: 10.1021/bi00815a010. [DOI] [PubMed] [Google Scholar]
  17. Wu W. H., Shemin D., Richards K. E., Williams R. C. The quaternary structure of delta-aminolevulinic acid dehydratase from bovine liver. Proc Natl Acad Sci U S A. 1974 May;71(5):1767–1770. doi: 10.1073/pnas.71.5.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES