Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1988 Mar;81(3):826–833. doi: 10.1172/JCI113391

Use of human surfactant low molecular weight apoproteins in the reconstitution of surfactant biologic activity.

S D Revak 1, T A Merritt 1, E Degryse 1, L Stefani 1, M Courtney 1, M Hallman 1, C G Cochrane 1
PMCID: PMC442533  PMID: 3343343

Abstract

Two low molecular weight (LMW) apoproteins were isolated from human pulmonary surfactant. SDS polyacrylamide gel analysis showed one protein (SP 18) to have an apparent molecular weight of 18,000 when unreduced and 9,000 D after reduction. The second protein (SP 9) migrated at approximately 9,000 D in the presence or absence of reducing agents. Both proteins contain a high number of hydrophobic amino acids. The NH2-terminal sequence of SP 18 was determined to be: NH2-phe-pro-ile-pro-leu-pro-tyr-. A cDNA clone isolated from a human adult lung cDNA library contained a long open reading frame encoding at an internal position the human SP 18 amino-terminal sequence. Mixtures of phospholipids (PL) and SP 9 and SP 18 were assessed for their capacity to reduce surface tensions on a pulsating bubble surfactometer. The addition of 1% apoprotein resulted in a reduction of surface tension after 15 s from 42.9 dyn/cm for PL alone to 16.7 and 6.3 dyn/cm for preparations containing SP 9 and SP 18, respectively. In vivo assessment of reconstituted surfactant activity was performed in fetal rabbits. Reconstituted surfactant consisting of PL + 0.5% SP 18 instilled intratracheally at delivery resulted in a marked increase in lung compliance, while the incorporation of 0.5% SP 9 yielded a moderate increase. These data show the ability to produce biologically active surfactant by the addition of isolated LMW apoproteins to defined PL.

Full text

PDF
826

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Benson B. J., Hawgood S., Williams M. C. Role of apoprotein and calcium ions in surfactant function. Exp Lung Res. 1984;6(3-4):223–236. doi: 10.3109/01902148409109250. [DOI] [PubMed] [Google Scholar]
  3. Benson B., Hawgood S., Schilling J., Clements J., Damm D., Cordell B., White R. T. Structure of canine pulmonary surfactant apoprotein: cDNA and complete amino acid sequence. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6379–6383. doi: 10.1073/pnas.82.19.6379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benton W. D., Davis R. W. Screening lambdagt recombinant clones by hybridization to single plaques in situ. Science. 1977 Apr 8;196(4286):180–182. doi: 10.1126/science.322279. [DOI] [PubMed] [Google Scholar]
  5. Bhattacharyya S. N., Lynn W. S. Isolation and characterization of a pulmonary glycoprotein from human amniotic fluid. Biochim Biophys Acta. 1978 Dec 20;537(2):329–335. doi: 10.1016/0005-2795(78)90516-0. [DOI] [PubMed] [Google Scholar]
  6. Bhattacharyya S. N., Lynn W. S. Structural characterization of a glycoprotein isolated from alveoli of patients with alveolar proteinosis. J Biol Chem. 1979 Jun 25;254(12):5191–5198. [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Enhorning G., Shennan A., Possmayer F., Dunn M., Chen C. P., Milligan J. Prevention of neonatal respiratory distress syndrome by tracheal instillation of surfactant: a randomized clinical trial. Pediatrics. 1985 Aug;76(2):145–153. [PubMed] [Google Scholar]
  9. Floros J., Phelps D. S., Taeusch H. W. Biosynthesis and in vitro translation of the major surfactant-associated protein from human lung. J Biol Chem. 1985 Jan 10;260(1):495–500. [PubMed] [Google Scholar]
  10. Fujiwara T., Maeta H., Chida S., Morita T., Watabe Y., Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980 Jan 12;1(8159):55–59. doi: 10.1016/s0140-6736(80)90489-4. [DOI] [PubMed] [Google Scholar]
  11. Glasser S. W., Korfhagen T. R., Weaver T., Pilot-Matias T., Fox J. L., Whitsett J. A. cDNA and deduced amino acid sequence of human pulmonary surfactant-associated proteolipid SPL(Phe). Proc Natl Acad Sci U S A. 1987 Jun;84(12):4007–4011. doi: 10.1073/pnas.84.12.4007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goerke J. Lung surfactant. Biochim Biophys Acta. 1974 Dec 16;344(3-4):241–261. doi: 10.1016/0304-4157(74)90009-4. [DOI] [PubMed] [Google Scholar]
  13. Hallman M., Merritt T. A., Jarvenpaa A. L., Boynton B., Mannino F., Gluck L., Moore T., Edwards D. Exogenous human surfactant for treatment of severe respiratory distress syndrome: a randomized prospective clinical trial. J Pediatr. 1985 Jun;106(6):963–969. doi: 10.1016/s0022-3476(85)80253-5. [DOI] [PubMed] [Google Scholar]
  14. Hallman M., Merritt T. A., Schneider H., Epstein B. L., Mannino F., Edwards D. K., Gluck L. Isolation of human surfactant from amniotic fluid and a pilot study of its efficacy in respiratory distress syndrome. Pediatrics. 1983 Apr;71(4):473–482. [PubMed] [Google Scholar]
  15. Hawgood S., Benson B. J., Hamilton R. L., Jr Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry. 1985 Jan 1;24(1):184–190. doi: 10.1021/bi00322a026. [DOI] [PubMed] [Google Scholar]
  16. Hawgood S., Benson B. J., Schilling J., Damm D., Clements J. A., White R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption. Proc Natl Acad Sci U S A. 1987 Jan;84(1):66–70. doi: 10.1073/pnas.84.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobs K. A., Phelps D. S., Steinbrink R., Fisch J., Kriz R., Mitsock L., Dougherty J. P., Taeusch H. W., Floros J. Isolation of a cDNA clone encoding a high molecular weight precursor to a 6-kDa pulmonary surfactant-associated protein. J Biol Chem. 1987 Jul 15;262(20):9808–9811. [PubMed] [Google Scholar]
  18. Katyal S. L., Singh G. An immunologic study of the apoproteins of rat lung surfactant. Lab Invest. 1979 May;40(5):562–567. [PubMed] [Google Scholar]
  19. Katyal S. L., Singh G. Structural and ontogenetic relationships of rat lung surfactant apoproteins. Exp Lung Res. 1984;6(3-4):175–189. doi: 10.3109/01902148409109246. [DOI] [PubMed] [Google Scholar]
  20. King R. J., Carmichael M. C., Horowitz P. M. Reassembly of lipid-protein complexes of pulmonary surfactant. Proposed mechanism of interaction. J Biol Chem. 1983 Sep 10;258(17):10672–10680. [PubMed] [Google Scholar]
  21. King R. J., MacBeth M. C. Interaction of the lipid and protein components of pulmonary surfactant. Role of phosphatidylglycerol and calcium. Biochim Biophys Acta. 1981 Oct 2;647(2):159–168. doi: 10.1016/0005-2736(81)90242-x. [DOI] [PubMed] [Google Scholar]
  22. Kwong M. S., Egan E. A., Notter R. H., Shapiro D. L. Double-blind clinical trial of calf lung surfactant extract for the prevention of hyaline membrane disease in extremely premature infants. Pediatrics. 1985 Oct;76(4):585–592. [PubMed] [Google Scholar]
  23. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  24. Küpper H., Keller W., Kurz C., Forss S., Schaller H., Franze R., Strohmaier K., Marquardt O., Zaslavsky V. G., Hofschneider P. H. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli. Nature. 1981 Feb 12;289(5798):555–559. doi: 10.1038/289555a0. [DOI] [PubMed] [Google Scholar]
  25. Le Bouc Y., Dreyer D., Jaeger F., Binoux M., Sondermeyer P. Complete characterization of the human IGF-I nucleotide sequence isolated from a newly constructed adult liver cDNA library. FEBS Lett. 1986 Feb 3;196(1):108–112. doi: 10.1016/0014-5793(86)80223-x. [DOI] [PubMed] [Google Scholar]
  26. Merritt T. A., Hallman M., Bloom B. T., Berry C., Benirschke K., Sahn D., Key T., Edwards D., Jarvenpaa A. L., Pohjavuori M. Prophylactic treatment of very premature infants with human surfactant. N Engl J Med. 1986 Sep 25;315(13):785–790. doi: 10.1056/NEJM198609253151301. [DOI] [PubMed] [Google Scholar]
  27. Merritt T. A., Hallman M., Holcomb K., Strayer D., Bloom B., Revak S., Cochrane C. G. Human surfactant treatment of severe respiratory distress syndrome: pulmonary effluent indicators of lung inflammation. J Pediatr. 1986 May;108(5 Pt 1):741–748. doi: 10.1016/s0022-3476(86)81058-7. [DOI] [PubMed] [Google Scholar]
  28. Metcalfe I. L., Enhorning G., Possmayer F. Pulmonary surfactant-associated proteins: their role in the expression of surface activity. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jul;49(1):34–41. doi: 10.1152/jappl.1980.49.1.34. [DOI] [PubMed] [Google Scholar]
  29. Phelps D. S., Smith L. M., Taeusch H. W. Characterization and partial amino acid sequence of a low molecular weight surfactant protein. Am Rev Respir Dis. 1987 May;135(5):1112–1117. doi: 10.1164/arrd.1987.135.5.1112. [DOI] [PubMed] [Google Scholar]
  30. Phizackerley P. J., Town M. H., Newman G. E. Hydrophobic proteins of lamellated osmiophilic bodies isolated from pig lung. Biochem J. 1979 Dec 1;183(3):731–736. doi: 10.1042/bj1830731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Revak S. D., Merritt T. A., Hallman M., Cochrane C. G. Reconstitution of surfactant activity using purified human apoprotein and phospholipids measured in vitro and in vivo. Am Rev Respir Dis. 1986 Dec;134(6):1258–1265. doi: 10.1164/arrd.1986.134.5.1258. [DOI] [PubMed] [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schneider H. A., Hallman M., Benirschke K., Gluck L. Human surfactant: a therapeutic trial in premature rabbits. J Pediatr. 1982 Apr;100(4):619–622. doi: 10.1016/s0022-3476(82)80769-5. [DOI] [PubMed] [Google Scholar]
  34. Shapiro D. L., Notter R. H., Morin F. C., 3rd, Deluga K. S., Golub L. M., Sinkin R. A., Weiss K. I., Cox C. Double-blind, randomized trial of a calf lung surfactant extract administered at birth to very premature infants for prevention of respiratory distress syndrome. Pediatrics. 1985 Oct;76(4):593–599. [PubMed] [Google Scholar]
  35. Shelley S. A., Balis J. U., Paciga J. E., Espinoza C. G., Richman A. V. Biochemical composition of adult human lung surfactant. Lung. 1982;160(4):195–206. doi: 10.1007/BF02719293. [DOI] [PubMed] [Google Scholar]
  36. Smyth J. A., Metcalfe I. L., Duffty P., Possmayer F., Bryan M. H., Enhorning G. Hyaline membrane disease treated with bovine surfactant. Pediatrics. 1983 Jun;71(6):913–917. [PubMed] [Google Scholar]
  37. Sueishi K., Benson B. J. Isolation of a major apolipoprotein of canine and murine pulmonary surfactant. Biochemical and immunochemical characteristics. Biochim Biophys Acta. 1981 Sep 24;665(3):442–453. doi: 10.1016/0005-2760(81)90257-5. [DOI] [PubMed] [Google Scholar]
  38. Suzuki Y., Curstedt T., Grossmann G., Kobayashi T., Nilsson R., Nohara K., Robertson B. The role of the low-molecular weight (less than or equal to 15,000 daltons) apoproteins of pulmonary surfactant. Eur J Respir Dis. 1986 Nov;69(5):336–345. [PubMed] [Google Scholar]
  39. Suzuki Y., Kogishi K., Fujita Y., Kina T., Nishikawa S. A monoclonal antibody to the 15,000 dalton protein associated with porcine pulmonary surfactant. Exp Lung Res. 1986;11(1):61–73. doi: 10.3109/01902148609062827. [DOI] [PubMed] [Google Scholar]
  40. Taeusch H. W., Keough K. M., Williams M., Slavin R., Steele E., Lee A. S., Phelps D., Kariel N., Floros J., Avery M. E. Characterization of bovine surfactant for infants with respiratory distress syndrome. Pediatrics. 1986 Apr;77(4):572–581. [PubMed] [Google Scholar]
  41. Takahashi A., Fujiwara T. Proteolipid in bovine lung surfactant: its role in surfactant function. Biochem Biophys Res Commun. 1986 Mar 13;135(2):527–532. doi: 10.1016/0006-291x(86)90026-4. [DOI] [PubMed] [Google Scholar]
  42. White R. T., Damm D., Miller J., Spratt K., Schilling J., Hawgood S., Benson B., Cordell B. Isolation and characterization of the human pulmonary surfactant apoprotein gene. 1985 Sep 26-Oct 2Nature. 317(6035):361–363. doi: 10.1038/317361a0. [DOI] [PubMed] [Google Scholar]
  43. Whitsett J. A., Hull W. M., Ohning B., Ross G., Weaver T. E. Immunologic identification of a pulmonary surfactant-associated protein of molecular weight = 6000 daltons. Pediatr Res. 1986 Aug;20(8):744–749. doi: 10.1203/00006450-198608000-00009. [DOI] [PubMed] [Google Scholar]
  44. Whitsett J. A., Hull W., Ross G., Weaver T. Characteristics of human surfactant-associated glycoproteins A. Pediatr Res. 1985 May;19(5):501–508. doi: 10.1203/00006450-198505000-00018. [DOI] [PubMed] [Google Scholar]
  45. Whitsett J. A., Ohning B. L., Ross G., Meuth J., Weaver T., Holm B. A., Shapiro D. L., Notter R. H. Hydrophobic surfactant-associated protein in whole lung surfactant and its importance for biophysical activity in lung surfactant extracts used for replacement therapy. Pediatr Res. 1986 May;20(5):460–467. doi: 10.1203/00006450-198605000-00016. [DOI] [PubMed] [Google Scholar]
  46. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  47. Yu S. H., Possmayer F. Reconstitution of surfactant activity by using the 6 kDa apoprotein associated with pulmonary surfactant. Biochem J. 1986 May 15;236(1):85–89. doi: 10.1042/bj2360085. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES