Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jun 15;97(12):2753–2762. doi: 10.1172/JCI118730

A mouse model of gyrate atrophy of the choroid and retina. Early retinal pigment epithelium damage and progressive retinal degeneration.

T Wang 1, A H Milam 1, G Steel 1, D Valle 1
PMCID: PMC507368  PMID: 8675686

Abstract

Gyrate atrophy (GA) of the choroid and retina is a blinding chorioretinal degeneration caused by deficiency of ornithine delta-aminotransferase (OAT). The phenotype of GA is characterized by progressive concentric reduction of the visual fields and ornithine accumulation. To understand better the pathogenesis of GA and to develop a model to test therapeutic strategies, we produced an OAT-deficient mouse by gene targeting. Like human GA patients, adult OAT-deficient mice exhibit chronic hyperornithinemia to levels 10-15-fold above normal and massive ornithinuria. Slowly progressive retinal degeneration is reflected by a gradual decline in electroretinogram amplitudes over the first 12 mo of life. At 2 mo, the retinal pigment epithelium is histologically normal, but electron microscopy reveals sporadic degeneration of scattered pigment epithelial cells. By 6 mo there are more diffuse abnormalities of the pigment epithelium with accumulation of large phagosomes and crystalloid inclusions. Although morphologically normal at 2 mo, the photo-receptor outer segments become highly disorganized and shortened to 60% of control length by 10 mo. Additionally, there is cumulative loss of the photoreceptor cells, which reaches 33% by 10 mo and is most pronounced in the central region of the retina. Our results indicate that retinal pigment epithelial cells are the initial site of insult in GA and that the OAT-deficient mouse is an excellent animal model of GA in human patients.

Full Text

The Full Text of this article is available as a PDF (643.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brody L. C., Mitchell G. A., Obie C., Michaud J., Steel G., Fontaine G., Robert M. F., Sipila I., Kaiser-Kupfer M., Valle D. Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J Biol Chem. 1992 Feb 15;267(5):3302–3307. [PubMed] [Google Scholar]
  2. Carter-Dawson L. D., LaVail M. M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol. 1979 Nov 15;188(2):245–262. doi: 10.1002/cne.901880204. [DOI] [PubMed] [Google Scholar]
  3. Daune-Anglard G., Bonaventure N., Seiler N. Some biochemical and pathophysiological aspects of long-term elevation of brain ornithine concentrations. Pharmacol Toxicol. 1993 Jul;73(1):29–34. doi: 10.1111/j.1600-0773.1993.tb01953.x. [DOI] [PubMed] [Google Scholar]
  4. Eisenfeld A. J., Bunt-Milam A. H., Sarthy P. V. Müller cell expression of glial fibrillary acidic protein after genetic and experimental photoreceptor degeneration in the rat retina. Invest Ophthalmol Vis Sci. 1984 Nov;25(11):1321–1328. [PubMed] [Google Scholar]
  5. Frankel W. N. Taking stock of complex trait genetics in mice. Trends Genet. 1995 Dec;11(12):471–477. doi: 10.1016/s0168-9525(00)89155-6. [DOI] [PubMed] [Google Scholar]
  6. François J. Gyrate atrophy of the choroid and retina. Ophthalmologica. 1979;178(6):311–320. doi: 10.1159/000308842. [DOI] [PubMed] [Google Scholar]
  7. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamasaki D. I., Dix R. D., Atherton S. S. Bilateral alterations of the ERG and retinal histology following unilateral HSV-1 inoculation. Invest Ophthalmol Vis Sci. 1988 Aug;29(8):1242–1254. [PubMed] [Google Scholar]
  9. Hauser E. R., Finkelstein J. E., Valle D., Brusilow S. W. Allopurinol-induced orotidinuria. A test for mutations at the ornithine carbamoyltransferase locus in women. N Engl J Med. 1990 Jun 7;322(23):1641–1645. doi: 10.1056/NEJM199006073222305. [DOI] [PubMed] [Google Scholar]
  10. Hayasaka S., Shiono T., Takaku Y., Mizuno K. Ornithine ketoacid aminotransferase in the bovine eye. Invest Ophthalmol Vis Sci. 1980 Dec;19(12):1457–1460. [PubMed] [Google Scholar]
  11. Inana G., Totsuka S., Redmond M., Dougherty T., Nagle J., Shiono T., Ohura T., Kominami E., Katunuma N. Molecular cloning of human ornithine aminotransferase mRNA. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1203–1207. doi: 10.1073/pnas.83.5.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaiser-Kupfer M. I., Caruso R. C., Valle D. Gyrate atrophy of the choroid and retina. Long-term reduction of ornithine slows retinal degeneration. Arch Ophthalmol. 1991 Nov;109(11):1539–1548. doi: 10.1001/archopht.1991.01080110075039. [DOI] [PubMed] [Google Scholar]
  13. Kaiser-Kupfer M. I., Ludwig I. H., de Monasterio F. M., Valle D., Krieger I. Gyrate atrophy of the choroid and retina. Early findings. Ophthalmology. 1985 Mar;92(3):394–401. doi: 10.1016/s0161-6420(85)34022-8. [DOI] [PubMed] [Google Scholar]
  14. Kasahara M., Matsuzawa T., Kokubo M., Gushiken Y., Tashiro K., Koide T., Watanabe H., Katunuma N. Immunohistochemical localization of ornithine aminotransferase in normal rat tissues by Fab'-horseradish peroxidase conjugates. J Histochem Cytochem. 1986 Nov;34(11):1385–1388. doi: 10.1177/34.11.3534076. [DOI] [PubMed] [Google Scholar]
  15. LaVail M. M., Battelle B. A. Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp Eye Res. 1975 Aug;21(2):167–192. doi: 10.1016/0014-4835(75)90080-9. [DOI] [PubMed] [Google Scholar]
  16. Li Z. Y., Jacobson S. G., Milam A. H. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry. Exp Eye Res. 1994 Apr;58(4):397–408. doi: 10.1006/exer.1994.1032. [DOI] [PubMed] [Google Scholar]
  17. Li Z. Y., Kljavin I. J., Milam A. H. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J Neurosci. 1995 Aug;15(8):5429–5438. doi: 10.1523/JNEUROSCI.15-08-05429.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCulloch J. C., Arshinoff S. A., Marliss E. B., Parker J. A. Hyperornithinemia and gyrate atrophy of the choroid and retina. Ophthalmology. 1978 Sep;85(9):918–928. doi: 10.1016/s0161-6420(78)35598-6. [DOI] [PubMed] [Google Scholar]
  19. Mitchell G. A., Looney J. E., Brody L. C., Steel G., Suchanek M., Engelhardt J. F., Willard H. F., Valle D. Human ornithine-delta-aminotransferase. cDNA cloning and analysis of the structural gene. J Biol Chem. 1988 Oct 5;263(28):14288–14295. [PubMed] [Google Scholar]
  20. NOELL W. K. The impairment of visual cell structure by iodoacetate. J Cell Physiol. 1952 Aug;40(1):25–55. doi: 10.1002/jcp.1030400104. [DOI] [PubMed] [Google Scholar]
  21. Nir I., Ransom N., Smith S. B. Ultrastructural features of retinal dystrophy in mutant vitiligo mice. Exp Eye Res. 1995 Sep;61(3):363–377. doi: 10.1016/s0014-4835(05)80130-7. [DOI] [PubMed] [Google Scholar]
  22. Papermaster D. S. Necessary but insufficient. Nat Med. 1995 Sep;1(9):874–875. doi: 10.1038/nm0995-874. [DOI] [PubMed] [Google Scholar]
  23. Raitta C., Carlson S., Vannas-Sulonen K. Gyrate atrophy of the choroid and retina: ERG of the neural retina and the pigment epithelium. Br J Ophthalmol. 1990 Jun;74(6):363–367. doi: 10.1136/bjo.74.6.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ramesh V., Shaffer M. M., Allaire J. M., Shih V. E., Gusella J. F. Investigation of gyrate atrophy using a cDNA clone for human ornithine aminotransferase. DNA. 1986 Dec;5(6):493–501. doi: 10.1089/dna.1.1986.5.493. [DOI] [PubMed] [Google Scholar]
  25. Rao G. N., Cotlier E. Ornithine delta-aminotransferase activity in retina and other tissues. Neurochem Res. 1984 Apr;9(4):555–562. doi: 10.1007/BF00964382. [DOI] [PubMed] [Google Scholar]
  26. Ratzlaff K., Baich A. Comparison of ornithine aminotransferase activities in the pigment epithelium and retina of vertebrates. Comp Biochem Physiol B. 1987;88(1):35–37. doi: 10.1016/0305-0491(87)90075-7. [DOI] [PubMed] [Google Scholar]
  27. Simell O., Takki K. Raised plasma-ornithine and gyrate atrophy of the choroid and retina. Lancet. 1973 May 12;1(7811):1031–1033. doi: 10.1016/s0140-6736(73)90667-3. [DOI] [PubMed] [Google Scholar]
  28. Smithies O., Maeda N. Gene targeting approaches to complex genetic diseases: atherosclerosis and essential hypertension. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5266–5272. doi: 10.1073/pnas.92.12.5266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takahashi O., Ishiguro S., Mito T., Hayasaka S., Shiono T., Mizuno K., Ohura T., Tada K. Immunocytochemical localization of ornithine aminotransferase in rat ocular tissues. Invest Ophthalmol Vis Sci. 1987 Sep;28(9):1617–1619. [PubMed] [Google Scholar]
  30. Takki K. K., Milton R. C. The natural history of gyrate atrophy of the choroid and retina. Ophthalmology. 1981 Apr;88(4):292–301. doi: 10.1016/s0161-6420(81)35031-3. [DOI] [PubMed] [Google Scholar]
  31. Takki K. Gyrate atrophy of the choroid and retina associated with hyperornithinaemia. Br J Ophthalmol. 1974 Jan;58(1):3–23. doi: 10.1136/bjo.58.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Takki K., Simell O. Genetic aspects in gyrate atrophy of the choroid and retina with hyperornithinaemia. Br J Ophthalmol. 1974 Nov;58(11):907–916. doi: 10.1136/bjo.58.11.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Takki K., Simell O. Gyrate atrophy of the choroid and retina with hyperornithinemia HOGA. Birth Defects Orig Artic Ser. 1976;12(3):373–384. [PubMed] [Google Scholar]
  34. Valle D. L., Boison A. P., Jezyk P., Aguirre G. Gyrate atrophy of the choroid and retina in a cat. Invest Ophthalmol Vis Sci. 1981 Feb;20(2):251–255. [PubMed] [Google Scholar]
  35. Valle D., Walser M., Brusilow S. W., Kaiser-Kupfer M. Gyrate atrophy of the choroid and retina: amino acid metabolism and correction of hyperornithinemia with an arginine-deficient diet. J Clin Invest. 1980 Feb;65(2):371–378. doi: 10.1172/JCI109680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Valle D., Walser M., Brusilow S., Kaiser-Kupfer M. I., Takki K. Gyrate atrophy of the choroid and retina. Biochemical considerations and experience with an arginine-restricted diet. Ophthalmology. 1981 Apr;88(4):325–330. doi: 10.1016/s0161-6420(81)35028-3. [DOI] [PubMed] [Google Scholar]
  37. Vannas-Sulonen K. Progression of gyrate atrophy of the choroid and retina. A long-term follow-up by fluorescein angiography. Acta Ophthalmol (Copenh) 1987 Feb;65(1):101–109. doi: 10.1111/j.1755-3768.1987.tb08499.x. [DOI] [PubMed] [Google Scholar]
  38. Vannas-Sulonen K., Vannas A., O'Donnell J. J., Sipilä I., Wood I. Pathology of iridectomy specimens in gyrate atrophy of the retina and choroid. Acta Ophthalmol (Copenh) 1983 Feb;61(1):9–19. doi: 10.1111/j.1755-3768.1983.tb01389.x. [DOI] [PubMed] [Google Scholar]
  39. Wang T., Lawler A. M., Steel G., Sipila I., Milam A. H., Valle D. Mice lacking ornithine-delta-aminotransferase have paradoxical neonatal hypoornithinaemia and retinal degeneration. Nat Genet. 1995 Oct;11(2):185–190. doi: 10.1038/ng1095-185. [DOI] [PubMed] [Google Scholar]
  40. Wilson D. J., Weleber R. G., Green W. R. Ocular clinicopathologic study of gyrate atrophy. Am J Ophthalmol. 1991 Jan 15;111(1):24–33. doi: 10.1016/s0002-9394(14)76892-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES