Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1997 Sep 15;100(6):1481–1487. doi: 10.1172/JCI119669

Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor.

R W Colman 1, R A Pixley 1, S Najamunnisa 1, W Yan 1, J Wang 1, A Mazar 1, K R McCrae 1
PMCID: PMC508327  PMID: 9294114

Abstract

The urokinase receptor (uPAR) binds urokinase-type plasminogen activator (u-PA) through specific interactions with uPAR domain 1, and vitronectin through interactions with a site within uPAR domains 2 and 3. These interactions promote the expression of cell surface plasminogen activator activity and cellular adhesion to vitronectin, respectively. High molecular weight kininogen (HK) also stimulates the expression of cell surface plasminogen activator activity through its ability to serve as an acquired receptor for prekallikrein, which, after its activation, may directly activate prourokinase. Here, we report that binding of the cleaved form of HK (HKa) to human umbilical vein endothelial cells (HUVEC) is mediated through zinc-dependent interactions with uPAR. These occur through a site within uPAR domains 2 and 3, since the binding of 125I-HKa to HUVEC is inhibited by vitronectin, anti-uPAR domain 2 and 3 antibodies and soluble, recombinant uPAR (suPAR), but not by antibody 7E3, which recognizes the beta chain of the endothelial cell vitronectin receptor (integrin alphavbeta3), or fibrinogen, another alphavbeta3 ligand. We also demonstrate the formation of a zinc-dependent complex between suPAR and HKa. Interactions of HKa with endothelial cell uPAR may underlie its ability to promote kallikrein-dependent cell surface plasmin generation, and also explain, in part, its antiadhesive properties.

Full Text

The Full Text of this article is available as a PDF (193.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asakura S., Hurley R. W., Skorstengaard K., Ohkubo I., Mosher D. F. Inhibition of cell adhesion by high molecular weight kininogen. J Cell Biol. 1992 Jan;116(2):465–476. doi: 10.1083/jcb.116.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bacharach E., Itin A., Keshet E. In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10686–10690. doi: 10.1073/pnas.89.22.10686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnathan E. S., Kuo A., Rosenfeld L., Karikó K., Leski M., Robbiati F., Nolli M. L., Henkin J., Cines D. B. Interaction of single-chain urokinase-type plasminogen activator with human endothelial cells. J Biol Chem. 1990 Feb 15;265(5):2865–2872. [PubMed] [Google Scholar]
  4. Behrendt N., Ploug M., Patthy L., Houen G., Blasi F., Danø K. The ligand-binding domain of the cell surface receptor for urokinase-type plasminogen activator. J Biol Chem. 1991 Apr 25;266(12):7842–7847. [PubMed] [Google Scholar]
  5. Berrettini M., Schleef R. R., Heeb M. J., Hopmeier P., Griffin J. H. Assembly and expression of an intrinsic factor IX activator complex on the surface of cultured human endothelial cells. J Biol Chem. 1992 Oct 5;267(28):19833–19839. [PubMed] [Google Scholar]
  6. Blasi F. The urokinase receptor and cell migration. Semin Thromb Hemost. 1996;22(6):513–516. doi: 10.1055/s-2007-999053. [DOI] [PubMed] [Google Scholar]
  7. DeLa Cadena R. A., Colman R. W. The sequence HGLGHGHEQQHGLGHGH in the light chain of high molecular weight kininogen serves as a primary structural feature for zinc-dependent binding to an anionic surface. Protein Sci. 1992 Jan;1(1):151–160. doi: 10.1002/pro.5560010115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DeLa Cadena R. A., Wyshock E. G., Kunapuli S. P., Schultze R. L., Miller M., Walz D. A., Colman R. W. Platelet thrombospondin interactions with human high and low molecular weight kininogens. Thromb Haemost. 1994 Jul;72(1):125–131. [PubMed] [Google Scholar]
  9. Deng G., Curriden S. A., Wang S., Rosenberg S., Loskutoff D. J. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release? J Cell Biol. 1996 Sep;134(6):1563–1571. doi: 10.1083/jcb.134.6.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edgell C. J., McDonald C. C., Graham J. B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3734–3737. doi: 10.1073/pnas.80.12.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellis V., Behrendt N., Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem. 1991 Jul 5;266(19):12752–12758. [PubMed] [Google Scholar]
  12. Ellis V., Pyke C., Eriksen J., Solberg H., Danø K. The urokinase receptor: involvement in cell surface proteolysis and cancer invasion. Ann N Y Acad Sci. 1992 Dec 4;667:13–31. doi: 10.1111/j.1749-6632.1992.tb51591.x. [DOI] [PubMed] [Google Scholar]
  13. Ellis V., Scully M. F., Kakkar V. V. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J Biol Chem. 1989 Feb 5;264(4):2185–2188. [PubMed] [Google Scholar]
  14. Folkman J., Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–10934. [PubMed] [Google Scholar]
  15. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  16. Hajjar K. A., Hamel N. M. Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase. J Biol Chem. 1990 Feb 15;265(5):2908–2916. [PubMed] [Google Scholar]
  17. Hasan A. A., Cines D. B., Ngaiza J. R., Jaffe E. A., Schmaier A. H. High-molecular-weight kininogen is exclusively membrane bound on endothelial cells to influence activation of vascular endothelium. Blood. 1995 Jun 1;85(11):3134–3143. [PubMed] [Google Scholar]
  18. Hasan A. A., Cines D. B., Zhang J., Schmaier A. H. The carboxyl terminus of bradykinin and amino terminus of the light chain of kininogens comprise an endothelial cell binding domain. J Biol Chem. 1994 Dec 16;269(50):31822–31830. [PubMed] [Google Scholar]
  19. Herwald H., Dedio J., Kellner R., Loos M., Müller-Esterl W. Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the gC1q receptor. J Biol Chem. 1996 May 31;271(22):13040–13047. doi: 10.1074/jbc.271.22.13040. [DOI] [PubMed] [Google Scholar]
  20. Herwald H., Hasan A. A., Godovac-Zimmermann J., Schmaier A. H., Müller-Esterl W. Identification of an endothelial cell binding site on kininogen domain D3. J Biol Chem. 1995 Jun 16;270(24):14634–14642. [PubMed] [Google Scholar]
  21. Holland J. A., Pritchard K. A., Pappolla M. A., Wolin M. S., Rogers N. J., Stemerman M. B. Bradykinin induces superoxide anion release from human endothelial cells. J Cell Physiol. 1990 Apr;143(1):21–25. doi: 10.1002/jcp.1041430104. [DOI] [PubMed] [Google Scholar]
  22. Hong S. L. Effect of bradykinin and thrombin on prostacyclin synthesis in endothelial cells from calf and pig aorta and human umbilical cord vein. Thromb Res. 1980 Jun 15;18(6):787–795. doi: 10.1016/0049-3848(80)90201-7. [DOI] [PubMed] [Google Scholar]
  23. Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jiang Y. P., Muller-Esterl W., Schmaier A. H. Domain 3 of kininogens contains a cell-binding site and a site that modifies thrombin activation of platelets. J Biol Chem. 1992 Feb 25;267(6):3712–3717. [PubMed] [Google Scholar]
  25. Joseph K., Ghebrehiwet B., Peerschke E. I., Reid K. B., Kaplan A. P. Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII: identity with the receptor that binds to the globular "heads" of C1q (gC1q-R). Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8552–8557. doi: 10.1073/pnas.93.16.8552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kunapuli S. P., DeLa Cadena R. A., Colman R. W. Deletion mutagenesis of high molecular weight kininogen light chain. Identification of two anionic surface binding subdomains. J Biol Chem. 1993 Feb 5;268(4):2486–2492. [PubMed] [Google Scholar]
  27. Lenich C., Pannell R., Gurewich V. Assembly and activation of the intrinsic fibrinolytic pathway on the surface of human endothelial cells in culture. Thromb Haemost. 1995 Aug;74(2):698–703. [PubMed] [Google Scholar]
  28. Lin Y., Harris R. B., Yan W., McCrae K. R., Zhang H., Colman R. W. High molecular weight kininogen peptides inhibit the formation of kallikrein on endothelial cell surfaces and subsequent urokinase-dependent plasmin formation. Blood. 1997 Jul 15;90(2):690–697. [PubMed] [Google Scholar]
  29. Maciag T., Cerundolo J., Ilsley S., Kelley P. R., Forand R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5674–5678. doi: 10.1073/pnas.76.11.5674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McCrae K. R., DeMichele A., Samuels P., Roth D., Kuo A., Meng Q. H., Rauch J., Cines D. B. Detection of endothelial cell-reactive immunoglobulin in patients with anti-phospholipid antibodies. Br J Haematol. 1991 Dec;79(4):595–605. doi: 10.1111/j.1365-2141.1991.tb08087.x. [DOI] [PubMed] [Google Scholar]
  31. McEachern A. E., Shelton E. R., Bhakta S., Obernolte R., Bach C., Zuppan P., Fujisaki J., Aldrich R. W., Jarnagin K. Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7724–7728. doi: 10.1073/pnas.88.17.7724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Miles L. A., Levin E. G., Plescia J., Collen D., Plow E. F. Plasminogen receptors, urokinase receptors, and their modulation on human endothelial cells. Blood. 1988 Aug;72(2):628–635. [PubMed] [Google Scholar]
  33. Nakashima M., Mombouli J. V., Taylor A. A., Vanhoutte P. M. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. J Clin Invest. 1993 Dec;92(6):2867–2871. doi: 10.1172/JCI116907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nishikawa K., Shibayama Y., Kuna P., Calcaterra E., Kaplan A. P., Reddigari S. R. Generation of vasoactive peptide bradykinin from human umbilical vein endothelium-bound high molecular weight kininogen by plasma kallikrein. Blood. 1992 Oct 15;80(8):1980–1988. [PubMed] [Google Scholar]
  35. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  36. Phillips D. R., Charo I. F., Parise L. V., Fitzgerald L. A. The platelet membrane glycoprotein IIb-IIIa complex. Blood. 1988 Apr;71(4):831–843. [PubMed] [Google Scholar]
  37. Ploug M., Behrendt N., Løber D., Danø K. Protein structure and membrane anchorage of the cellular receptor for urokinase-type plasminogen activator. Semin Thromb Hemost. 1991 Jul;17(3):183–193. doi: 10.1055/s-2007-1002608. [DOI] [PubMed] [Google Scholar]
  38. Ploug M., Ellis V., Danø K. Ligand interaction between urokinase-type plasminogen activator and its receptor probed with 8-anilino-1-naphthalenesulfonate. Evidence for a hydrophobic binding site exposed only on the intact receptor. Biochemistry. 1994 Aug 2;33(30):8991–8997. doi: 10.1021/bi00196a017. [DOI] [PubMed] [Google Scholar]
  39. Ploug M., Rønne E., Behrendt N., Jensen A. L., Blasi F., Danø K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991 Jan 25;266(3):1926–1933. [PubMed] [Google Scholar]
  40. Pöllänen J. J. The N-terminal domain of human urokinase receptor contains two distinct regions critical for ligand recognition. Blood. 1993 Nov 1;82(9):2719–2729. [PubMed] [Google Scholar]
  41. Pöllänen J., Stephens R. W., Vaheri A. Directed plasminogen activation at the surface of normal and malignant cells. Adv Cancer Res. 1991;57:273–328. doi: 10.1016/s0065-230x(08)61002-7. [DOI] [PubMed] [Google Scholar]
  42. Reddigari S. R., Kuna P., Miragliotta G., Shibayama Y., Nishikawa K., Kaplan A. P. Human high molecular weight kininogen binds to human umbilical vein endothelial cells via its heavy and light chains. Blood. 1993 Mar 1;81(5):1306–1311. [PubMed] [Google Scholar]
  43. Schmaier A. H., Kuo A., Lundberg D., Murray S., Cines D. B. The expression of high molecular weight kininogen on human umbilical vein endothelial cells. J Biol Chem. 1988 Nov 5;263(31):16327–16333. [PubMed] [Google Scholar]
  44. Simon D. I., Rao N. K., Xu H., Wei Y., Majdic O., Ronne E., Kobzik L., Chapman H. A. Mac-1 (CD11b/CD18) and the urokinase receptor (CD87) form a functional unit on monocytic cells. Blood. 1996 Oct 15;88(8):3185–3194. [PubMed] [Google Scholar]
  45. Smith D., Gilbert M., Owen W. G. Tissue plasminogen activator release in vivo in response to vasoactive agents. Blood. 1985 Oct;66(4):835–839. [PubMed] [Google Scholar]
  46. Tait J. F., Fujikawa K. Identification of the binding site for plasma prekallikrein in human high molecular weight kininogen. A region from residues 185 to 224 of the kininogen light chain retains full binding activity. J Biol Chem. 1986 Nov 25;261(33):15396–15401. [PubMed] [Google Scholar]
  47. Tait J. F., Fujikawa K. Primary structure requirements for the binding of human high molecular weight kininogen to plasma prekallikrein and factor XI. J Biol Chem. 1987 Aug 25;262(24):11651–11656. [PubMed] [Google Scholar]
  48. Villanueva G. B., Leung L., Bradford H., Colman R. W. Conformation of high molecular weight kininogen: effects of kallikrein and factor XIa cleavage. Biochem Biophys Res Commun. 1989 Jan 16;158(1):72–79. doi: 10.1016/s0006-291x(89)80178-0. [DOI] [PubMed] [Google Scholar]
  49. Wachtfogel Y. T., DeLa Cadena R. A., Kunapuli S. P., Rick L., Miller M., Schultze R. L., Altieri D. C., Edgington T. S., Colman R. W. High molecular weight kininogen binds to Mac-1 on neutrophils by its heavy chain (domain 3) and its light chain (domain 5). J Biol Chem. 1994 Jul 29;269(30):19307–19312. [PubMed] [Google Scholar]
  50. Waltz D. A., Chapman H. A. Reversible cellular adhesion to vitronectin linked to urokinase receptor occupancy. J Biol Chem. 1994 May 20;269(20):14746–14750. [PubMed] [Google Scholar]
  51. Wei Y., Lukashev M., Simon D. I., Bodary S. C., Rosenberg S., Doyle M. V., Chapman H. A. Regulation of integrin function by the urokinase receptor. Science. 1996 Sep 13;273(5281):1551–1555. doi: 10.1126/science.273.5281.1551. [DOI] [PubMed] [Google Scholar]
  52. Wei Y., Waltz D. A., Rao N., Drummond R. J., Rosenberg S., Chapman H. A. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem. 1994 Dec 23;269(51):32380–32388. [PubMed] [Google Scholar]
  53. Weisel J. W., Nagaswami C., Woodhead J. L., DeLa Cadena R. A., Page J. D., Colman R. W. The shape of high molecular weight kininogen. Organization into structural domains, changes with activation, and interactions with prekallikrein, as determined by electron microscopy. J Biol Chem. 1994 Apr 1;269(13):10100–10106. [PubMed] [Google Scholar]
  54. Zini J. M., Murray S. C., Graham C. H., Lala P. K., Karikó K., Barnathan E. S., Mazar A., Henkin J., Cines D. B., McCrae K. R. Characterization of urokinase receptor expression by human placental trophoblasts. Blood. 1992 Jun 1;79(11):2917–2929. [PubMed] [Google Scholar]
  55. van Iwaarden F., de Groot P. G., Bouma B. N. The binding of high molecular weight kininogen to cultured human endothelial cells. J Biol Chem. 1988 Apr 5;263(10):4698–4703. [PubMed] [Google Scholar]
  56. van Iwaarden F., de Groot P. G., Sixma J. J., Berrettini M., Bouma B. N. High-molecular weight kininogen is present in cultured human endothelial cells: localization, isolation, and characterization. Blood. 1988 May;71(5):1268–1276. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES