Abstract
Excessive neutrophil activation causes posttraumatic complications, which may be reduced with hypertonic saline (HS) resuscitation. We tested if this is because of modulated neutrophil function by HS. Clinically relevant hypertonicity (10-25 mM) suppressed degranulation and superoxide formation in response to fMLP and blocked the activation of the mitogen activated protein kinases (MAPK) ERK1/2 and p38, but did not affect Ca2+ mobilization. HS did not suppress oxidative burst in response to phorbol myristate acetate (PMA). This indicates that HS suppresses neutrophil function by intercepting signal pathways upstream of or apart from PKC. HS activated p38 by itself and enhanced degranulation in response to PKC activation. This enhancement was reduced by inhibition of p38 with SB203580, suggesting that p38 up-regulation participates in HS-induced enhancements of degranulation. HS had similar effects on the degranulation of cells that were previously stimulated with fMLP, but had no effect on its own, suggesting that HS enhancement of degranulation requires another signal. We conclude that depending on other stimuli, HS can suppress neutrophil activation by intercepting multiple receptor signals or augment degranulation by enhancing p38 signaling. In patients HS resuscitation may reduce posttraumatic complications by preventing neutrophil activation via chemotactic factors released during reperfusion.
Full Text
The Full Text of this article is available as a PDF (425.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bokoch G. M. Chemoattractant signaling and leukocyte activation. Blood. 1995 Sep 1;86(5):1649–1660. [PubMed] [Google Scholar]
- Botha A. J., Moore F. A., Moore E. E., Sauaia A., Banerjee A., Peterson V. M. Early neutrophil sequestration after injury: a pathogenic mechanism for multiple organ failure. J Trauma. 1995 Sep;39(3):411–417. doi: 10.1097/00005373-199509000-00003. [DOI] [PubMed] [Google Scholar]
- Brewster J. L., de Valoir T., Dwyer N. D., Winter E., Gustin M. C. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19;259(5102):1760–1763. doi: 10.1126/science.7681220. [DOI] [PubMed] [Google Scholar]
- Brown J. M., Grosso M. A., Moore E. E. Hypertonic saline and dextran: impact on cardiac function in the isolated rat heart. J Trauma. 1990 Jun;30(6):646–651. [PubMed] [Google Scholar]
- Galcheva-Gargova Z., Dérijard B., Wu I. H., Davis R. J. An osmosensing signal transduction pathway in mammalian cells. Science. 1994 Aug 5;265(5173):806–808. doi: 10.1126/science.8047888. [DOI] [PubMed] [Google Scholar]
- Griswold J. A., Anglin B. L., Love R. T., Jr, Scott-Conner C. Hypertonic saline resuscitation: efficacy in a community-based burn unit. South Med J. 1991 Jun;84(6):692–696. [PubMed] [Google Scholar]
- Hampton M. B., Chambers S. T., Vissers M. C., Winterbourn C. C. Bacterial killing by neutrophils in hypertonic environments. J Infect Dis. 1994 Apr;169(4):839–846. doi: 10.1093/infdis/169.4.839. [DOI] [PubMed] [Google Scholar]
- Han J., Lee J. D., Bibbs L., Ulevitch R. J. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994 Aug 5;265(5173):808–811. doi: 10.1126/science.7914033. [DOI] [PubMed] [Google Scholar]
- Henrotte J. G. Variation of plasma potassium and potassium tolerance in man in relation to climatic adaptation. Fed Proc. 1966 Jul-Aug;25(4):1375–1379. [PubMed] [Google Scholar]
- Hoyt D. B., Junger W. G., Loomis W. H., Liu F. C. Effects of trauma on immune cell function: impairment of intracellular calcium signaling. Shock. 1994 Jul;2(1):23–28. doi: 10.1097/00024382-199407000-00005. [DOI] [PubMed] [Google Scholar]
- Junger W. G., Cardoza T. A., Liu F. C., Hoyt D. B., Goodwin R. Improved rapid photometric assay for quantitative measurement of PMN migration. J Immunol Methods. 1993 Mar 15;160(1):73–79. doi: 10.1016/0022-1759(93)90010-5. [DOI] [PubMed] [Google Scholar]
- Junger W. G., Hoyt D. B., Hamreus M., Liu F. C., Herdon-Remelius C., Junger W., Altman A. Hypertonic saline activates protein tyrosine kinases and mitogen-activated protein kinase p38 in T-cells. J Trauma. 1997 Mar;42(3):437–445. doi: 10.1097/00005373-199703000-00011. [DOI] [PubMed] [Google Scholar]
- Knall C., Worthen G. S., Johnson G. L. Interleukin 8-stimulated phosphatidylinositol-3-kinase activity regulates the migration of human neutrophils independent of extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3052–3057. doi: 10.1073/pnas.94.7.3052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krump E., Sanghera J. S., Pelech S. L., Furuya W., Grinstein S. Chemotactic peptide N-formyl-met-leu-phe activation of p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase-2 in human neutrophils. J Biol Chem. 1997 Jan 10;272(2):937–944. doi: 10.1074/jbc.272.2.937. [DOI] [PubMed] [Google Scholar]
- Kuroki M., O'Flaherty J. T. Differential effects of a mitogen-activated protein kinase kinase inhibitor on human neutrophil responses to chemotactic factors. Biochem Biophys Res Commun. 1997 Mar 17;232(2):474–477. doi: 10.1006/bbrc.1997.6296. [DOI] [PubMed] [Google Scholar]
- Maeda T., Takekawa M., Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science. 1995 Jul 28;269(5223):554–558. doi: 10.1126/science.7624781. [DOI] [PubMed] [Google Scholar]
- Maeda T., Wurgler-Murphy S. M., Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature. 1994 May 19;369(6477):242–245. doi: 10.1038/369242a0. [DOI] [PubMed] [Google Scholar]
- Mattox K. L., Maningas P. A., Moore E. E., Mateer J. R., Marx J. A., Aprahamian C., Burch J. M., Pepe P. E. Prehospital hypertonic saline/dextran infusion for post-traumatic hypotension. The U.S.A. Multicenter Trial. Ann Surg. 1991 May;213(5):482–491. doi: 10.1097/00000658-199105000-00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLean K. A., O'Neill P. A., Davies I., Morris J. Influence of age on plasma osmolality: a community study. Age Ageing. 1992 Jan;21(1):56–60. doi: 10.1093/ageing/21.1.56. [DOI] [PubMed] [Google Scholar]
- Nick J. A., Avdi N. J., Young S. K., Knall C., Gerwins P., Johnson G. L., Worthen G. S. Common and distinct intracellular signaling pathways in human neutrophils utilized by platelet activating factor and FMLP. J Clin Invest. 1997 Mar 1;99(5):975–986. doi: 10.1172/JCI119263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ota I. M., Varshavsky A. A yeast protein similar to bacterial two-component regulators. Science. 1993 Oct 22;262(5133):566–569. doi: 10.1126/science.8211183. [DOI] [PubMed] [Google Scholar]
- Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J., Davis R. J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995 Mar 31;270(13):7420–7426. doi: 10.1074/jbc.270.13.7420. [DOI] [PubMed] [Google Scholar]
- Rowe G. G., McKenna D. H., Corliss R. J., Sialer S. Hemodynamic effects of hypertonic sodium chloride. J Appl Physiol. 1972 Feb;32(2):182–184. doi: 10.1152/jappl.1972.32.2.182. [DOI] [PubMed] [Google Scholar]
- Ruch W., Cooper P. H., Baggiolini M. Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J Immunol Methods. 1983 Oct 28;63(3):347–357. doi: 10.1016/s0022-1759(83)80008-8. [DOI] [PubMed] [Google Scholar]
- Sato N., Kashima K., Shimizu H., Uehara Y., Shimomura Y., Mori M. Hypertonic glucose inhibits the production of oxygen-derived free radicals by rat neutrophils. Life Sci. 1993;52(18):1481–1486. doi: 10.1016/0024-3205(93)90109-g. [DOI] [PubMed] [Google Scholar]
- Sue-A-Quan A. K., Fialkow L., Vlahos C. J., Schelm J. A., Grinstein S., Butler J., Downey G. P. Inhibition of neutrophil oxidative burst and granule secretion by wortmannin: potential role of MAP kinase and renaturable kinases. J Cell Physiol. 1997 Jul;172(1):94–108. doi: 10.1002/(SICI)1097-4652(199707)172:1<94::AID-JCP11>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Matsumoto T., Kubo S., Haraoka M., Tanaka M., Kumazawa J. Influence of hyperosmotic environment comparable to the renal medulla upon membrane NADPH oxidase of human polymorphonuclear leukocytes. J Urol. 1994 Nov;152(5 Pt 1):1622–1625. doi: 10.1016/s0022-5347(17)32491-6. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Matsumoto T., Ogata N., Mizunoe Y., Tanaka M., Kumazawa J. Direct inactivation of human polymorphonuclear leukocyte by hyperosmotic urea comparable to the renal medulla. J Urol. 1993 Feb;149(2):386–389. doi: 10.1016/s0022-5347(17)36100-1. [DOI] [PubMed] [Google Scholar]
- Traverso L. W., Bellamy R. F., Hollenbach S. J., Witcher L. D. Hypertonic sodium chloride solutions: effect on hemodynamics and survival after hemorrhage in swine. J Trauma. 1987 Jan;27(1):32–39. [PubMed] [Google Scholar]
- Vassar M. J., Fischer R. P., O'Brien P. E., Bachulis B. L., Chambers J. A., Hoyt D. B., Holcroft J. W. A multicenter trial for resuscitation of injured patients with 7.5% sodium chloride. The effect of added dextran 70. The Multicenter Group for the Study of Hypertonic Saline in Trauma Patients. Arch Surg. 1993 Sep;128(9):1003–1013. doi: 10.1001/archsurg.1993.01420210067009. [DOI] [PubMed] [Google Scholar]
- Vassar M. J., Perry C. A., Holcroft J. W. Prehospital resuscitation of hypotensive trauma patients with 7.5% NaCl versus 7.5% NaCl with added dextran: a controlled trial. J Trauma. 1993 May;34(5):622–633. [PubMed] [Google Scholar]
- Velasco I. T., Pontieri V., Rocha e Silva M., Jr, Lopes O. U. Hyperosmotic NaCl and severe hemorrhagic shock. Am J Physiol. 1980 Nov;239(5):H664–H673. doi: 10.1152/ajpheart.1980.239.5.H664. [DOI] [PubMed] [Google Scholar]
- Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
- Worthen G. S., Avdi N., Buhl A. M., Suzuki N., Johnson G. L. FMLP activates Ras and Raf in human neutrophils. Potential role in activation of MAP kinase. J Clin Invest. 1994 Aug;94(2):815–823. doi: 10.1172/JCI117401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou F. Q., Manahan F. J., Yu A. W., Rahman M. A., Nawab Z. M., Fisher K. A., Ing T. S. Effects of hypertonic peritoneal dialysis solutions on neutrophil superoxide production. Artif Organs. 1990 Dec;14(6):410–412. doi: 10.1111/j.1525-1594.1990.tb02995.x. [DOI] [PubMed] [Google Scholar]