Skip to main content
Annals of Clinical Microbiology and Antimicrobials logoLink to Annals of Clinical Microbiology and Antimicrobials
. 2004 Jul 29;3:14. doi: 10.1186/1476-0711-3-14

Emerging resistance among bacterial pathogens in the intensive care unit – a European and North American Surveillance study (2000–2002)

Mark E Jones 1,, Deborah C Draghi 1, Clyde Thornsberry 1, James A Karlowsky 1, Daniel F Sahm 1, Richard P Wenzel 2
PMCID: PMC509280  PMID: 15283864

Abstract

Background

Globally ICUs are encountering emergence and spread of antibiotic-resistant pathogens and for some pathogens there are few therapeutic options available.

Methods

Antibiotic in vitro susceptibility data of predominant ICU pathogens during 2000–2 were analyzed using data from The Surveillance Network (TSN) Databases in Europe (France, Germany and Italy), Canada, and the United States (US).

Results

Oxacillin resistance rates among Staphylococcus aureus isolates ranged from 19.7% to 59.4%. Penicillin resistance rates among Streptococcus pneumoniae varied from 2.0% in Germany to as high as 20.2% in the US; however, ceftriaxone resistance rates were comparably lower, ranging from 0% in Germany to 3.4% in Italy. Vancomycin resistance rates among Enterococcus faecalis were ≤ 4.5%; however, among Enterococcus faecium vancomycin resistance rates were more frequent ranging from 0.8% in France to 76.3% in the United States. Putative rates of extended-spectrum β-lactamase (ESBL) production among Enterobacteriaceae were low, <6% among Escherichia coli in the five countries studied. Ceftriaxone resistance rates were generally lower than or similar to piperacillin-tazobactam for most of the Enterobacteriaceae species examined. Fluoroquinolone resistance rates were generally higher for E. coli (6.5% – 13.9%), Proteus mirabilis (0–34.7%), and Morganella morganii (1.6–20.7%) than other Enterobacteriaceae spp (1.5–21.3%). P. aeruginosa demonstrated marked variation in β-lactam resistance rates among countries. Imipenem was the most active compound tested against Acinetobacter spp., based on resistance rates.

Conclusion

There was a wide distribution in resistance patterns among the five countries. Compared with other countries, Italy showed the highest resistance rates to all the organisms with the exception of Enterococcus spp., which were highest in the US. This data highlights the differences in resistance encountered in intensive care units in Europe and North America and the need to determine current local resistance patterns by which to guide empiric antimicrobial therapy for intensive care infections.

Keywords: Intensive-care unit, antibiotic susceptibility

Background

Antimicrobial resistance has emerged as an important factor in predicting outcomes and overall resource use after infections in intensive care units (ICU) [1]. Globally ICUs are encountering emergence and spread of antibiotic-resistant pathogens. For some pathogens there are few therapeutic options available, e.g., vancomycin-resistant Enterococcus faecium. Awareness of these problems has been underscored with data from a number of surveillance studies aimed at improving the use of empiric therapy. In the United States there have been several national programs, which have focused on both the etiology of infections and resistance patterns of nosocomial or ICU infections including the National Nosocomial Infections Surveillance (NNIS) [2] and more recently an ICU-specific study examining the epidemiology of antimicrobial resistance, Project ICARE [3,4]. Stephen et al. collected strains from 28 ICUs from across the United States as part of the SENTRY Antimicrobial Surveillance Program in 2001 [5].

European data on the antimicrobial resistance of ICU pathogens has also been collected in several recent surveillance studies. A large prevalence survey of nosocomial infections in ICUs in 17 countries was published in 1995 [6], and more recently a number of nation-specific surveys were reported [7-9]. Several key points emerge: first, antimicrobial resistance among ICU pathogens is generally increasing, but variations do exist among different countries, probably due to individual antimicrobial use patterns; second, when new medical practices and alternative antimicrobials are introduced changes in the dominant microbial etiologies may emerge prompting novel empiric selections; and third, the standards of hygiene and infection control also vary across countries. Finally, appropriate therapy of ICU infections directed by local resistance data can have significant consequences for both patient and the healthcare system. It is against this background that local resistance surveillance programs are of most value in developing appropriate therapeutic guidelines for specific infections and patient types. For example, the recent modification to the American Thoracic Society guidelines for the treatment of hospital-acquired pneumonia [10] considered contemporary resistance data. Local surveillance data can be applied to other infections to assist in local formulary policy such as those governing treatment of nosocomial urinary tract infections [11].

This study using TSN program reports the antimicrobial resistance profiles of bacterial isolates from ICU patients in five countries during the period 2000–2002. The relevance of these recent nation-specific data will be discussed on a country-by-country basis, as part of improving and updating empiric therapeutic approaches to specific pathogens causing infections in the ICU setting according to each country. These surveillance programs help to maintain current knowledge of susceptibilities and relevant treatment options.

Methods

TSN Database – United States and Europe

TSN is a queriable, real-time database that electronically assimilates daily antimicrobial susceptibility testing and patient demographic data from a network of geographically dispersed laboratories in the United States (283 hospital sites), France (63 hospital sites), Germany (169 hospital sites), Italy (48 hospital sites) and Canada (87 hospital sites) [12].

Laboratories included in TSN include those servicing university, community, and private hospitals with bed sizes ranging from 100 to >1000 beds. Routine diagnostic susceptibility testing results are collected daily from each participating laboratory. The methods used by these laboratories include VITEK (bioMérieux, St. Louis, MO), MicroScan (Dade-Microscan, Sacramento, CA), Sceptor and Pasco MIC/ID (Becton Dickinson, Sparks, MD) and Etest (AB Biodisk, Solna, Sweden), as well as manual broth microdilution MIC, disk diffusion and agar dilution. TSN reflects current testing in participant laboratories and represents the data reported to physicians from the respective laboratories [13].

Although some European countries have alternate breakpoints, all data forwarded to TSN Databases are derived from hospitals that utilized NCCLS standards and definitions (United States, Canada, Italy, and Germany) [14] or the Comité de L'Antibiogramme de La Societé Français de Microbiologie (France) [15] thus standardizing datasets. Results were interpreted as susceptible, intermediate (if available), or resistant in TSN, based upon the NCCLS interpretative guidelines in place during 2001 [16]. In addition, a series of quality-control filters (i.e., critical rule sets) were used in TSN to screen susceptibility test results for patterns indicative of testing error and suspect results were removed from analysis for laboratory confirmation. In TSN, any result from the same patient with the same organism identification and the same susceptibility pattern received within five days was considered a repeat culture and was counted only once in the database.

Bacterial species and antimicrobials tested

For this study, data from TSN results for each individual database from January 1, 2000 through to December 31, 2002 were included in the analysis to determine the proportion of species and their susceptibility to antimicrobial agents commonly tested in clinical laboratories throughout the participating regions. Only isolates derived from patients located in hospital ICUs were considered in the analysis. Gram-positive species included in the analysis were comprised of S. aureus, coagulase negative staphylococci, Enterococcus faecalis,Enterococcus faecium, Streptococcus pyogenes, Streptococcus pneumoniae and viridans group streptococci. Gram-negative species studied comprised the predominantly encountered enteric species (Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus mirabilis, Morganella morganii and Serratia marcescens), and Pseudomonas aeruginosa and Acinetobacter spp.

The antibiotics studied are listed in Tables 2,3,4,5. Among E. coli, putative ESBL production was defined as those isolates that were intermediate or resistant (non-susceptible) to ceftazidime [17]. Given the large number of isolate results included in the majority of analyses in this study, statistical analysis was not performed, as even subtle differences in percent resistance (<1%) to an antimicrobial agent for any time period or demographic parameters would be reported as highly significant (P <0.001).

Table 2.

S. aureus, Coagulase-negative staphylococci, E. faecalis, and E. faecium isolated from ICU patients during 2000–2002

United States Canada Italy Germany Francea





Organism Agent Total n %S %R Total n %S %R Total n %S %R Total n %S %R Total n %S %R
Staphylococcus aureus Ampicillin 19,703 6.7 93.3 3,792 12.6 87.4 1,665 5.6 94.4 2,867 16.2 83.8 15 6.7 93.3
Cefepime 1,260 52.9 46.9 NTb NT NT 304 15.8 84.2 483 80.5 17.0 <10 NAc> NA
Cefotaxime 6,898 50.2 49.7 220 55.5 44.5 671 36.4 63.6 729 92.0 8.0 490 63.9 36.1
Ceftriaxone 5,914 45.6 54.3 153 69.3 30.7 1,048 28.1 71.8 220 88.6 11.4 23 73.9 26.1
Ciprofloxacin 24,350 47.4 51.0 5,958 74.5 24.1 4,600 39.7 58.6 5,243 73.4 26.1 316 57.0 40.5
Gentamicin 35,034 85.6 13.7 6,641 89.4 10.3 5,531 40.9 58.0 5,735 90.0 9.7 10,100 90.4 9.4
Oxacillin 44,939 47.7 52.3 10,105 80.3 19.7 6,147 40.6 59.4 6,475 79.0 21.0 10,512 59.4 40.6
Teicoplanin NT NT NT NT NT NT 5,868 100 0 4,632 99.8 0.2 8,232 100 0
Vancomycin 43,245 100 0 7,882 100 0 5,937 100 0 5,276 100 0 9,453 100 0
Staphylococcus aureus
OSSA Ampicillin 9,047 14.5 85.5 3,055 15.7 84.3 741 12.6 87.4 2,414 19.3 80.7 10 0 100
Cefepime 672 99.1 0.4 NT NT NT 49 98.0 2.0 387 99.5 0.3 NT NT NT
Cefotaxime 3,451 99.7 0.2 122 100 0 244 100 0 653 100 0 312 100 0
Ceftriaxone 2,707 99.5 0.2 106 100 0 295 99.0 0.3 194 100 0 16 100 0
Ciprofloxacin 11,827 91.2 6.5 4,692 93.5 4.8 1,902 91.4 4.9 4,171 91.4 8.0 188 90.4 6.4
Gentamicin 16,951 98.3 1.4 5,384 98.1 1.8 2,223 95.1 4.5 4,527 98.4 1.5 5,958 99.4 0.5
Oxacillin 21,416 100 0 8,110 100 0 2,495 100 0 5,115 100 0 6,244 100 0
Teicoplanin NT NT NT NT NT NT 2,402 100 0 3,593 99.9 0.1 5,018 100 0
Vancomycin 20,110 100 0 6,046 100 0 2,430 100 0 4,002 100 0 5,580 100 0
Staphylococcus aureus
ORSA Ampicillin 10,656 0 100 737 0 100 924 0 100 453 0 100 <10 NA NA
Cefepime 588 0 100 NT NT NT 255 0 100 96 4.2 84.4 <10 NA NA
Cefotaxime 3,447 0.6 99.3 98 0 100 427 0 100 76 23.7 76.3 178 0.6 99.4
Ceftriaxone 3,207 0 100 47 0 100 753 0.3 99.7 26 3.8 96.2 <10 NA NA
Ciprofloxacin 12,523 6.1 93.1 1,266 3.9 95.5 2,698 3.3 96.4 1,072 3.3 96.6 128 7.8 90.6
Gentamicin 18,083 73.7 25.2 1,257 52.0 46.8 3,308 4.5 94.0 1,208 58.7 40.5 4,142 77.5 22.2
Oxacillin 23,523 0 100 1,995 0.2 99.8 3,652 0 100 1,360 0 100 4,268 0 100
Teicoplanin NT NT NT NT NT NT 3,466 100 0 1,039 99.7 0.3 3,214 100 0
Vancomycin 23,135 100 0 1,836 100 0 3,507 100 0 1,274 100 0 3,873 100 0
Staphylcoccus species, coagulase-negative
Ampicillin 16,288 5.7 94.3 3,533 6.3 93.7 2,142 10.6 89.4 4,075 8.1 91.9 <10 NA NA
Cefepime 991 11.8 88.1 <10 NA NA 116 0 100 625 11.0 73.1 <10 NA NA
Cefotaxime 5,538 17.7 82.3 240 17.9 82.1 335 16.7 83.3 625 37.4 62.4 174 28.7 69.0
Ceftriaxone 3,471 14.8 84.8 116 22.4 77.6 512 11.7 88.3 412 25.0 74.8 <10 NA NA
Ciprofloxacin 18,829 40.2 58.3 5,366 44.4 54.7 5,102 42.7 54.0 6,197 29.5 67.6 198 44.4 53.0
Gentamicin 27,248 51.5 38.1 5,571 40.6 47.3 5,241 33.8 60.7 6,848 41.5 51.7 9,422 46.8 51.5
Oxacillin 35,135 15.8 84.2 9,172 20.6 79.4 5,961 15.2 84.8 7,442 18.6 81.4 9,884 30.1 69.9
Teicoplanin NT NT NT NT NT NT 5,797 93.7 2.4 5,096 95.6 0.7 7,670 84.6 3.1
Vancomycin 34,424 100 0 8,239 100 0 5,937 100 0 6,953 100 0 8,300 100 0
Staphylcoccus species, coagulase-negative
Oxacillin susceptible Ampicillin 2,582 35.7 64.3 638 34.6 65.4 437 51.7 48.3 824 39.6 60.4 <10 NA NA
Cefepime 117 100 0 NT NT NT NT NT NT <10 NA NA NT NT NT
Cefotaxime 978 99.5 0.2 42 100 0 56 100 0 128 100 0 54 92.6 0
Ceftriaxone 523 98.3 0.4 26 100 0 59 100 0 103 100 0 <10 NA NA
Ciprofloxacin 2,844 82.4 16.6 988 91.8 7.6 779 87.7 10.1 1,103 89.5 9.2 78 83.3 14.1
Gentamicin 4,424 93.5 4.2 1,068 91.9 5.3 698 94.3 5.3 1,263 96.5 2.7 2,822 93.9 5.4
Oxacillin 5,565 100 0 1,886 99.9 0.1 904 100 0 1,383 100 0 2,980 100 0
Teicoplanin NT NT NT NT NT NT 890 99.1 0.3 691 98.4 0.3 2,454 95.8 0.2
Vancomycin 5,240 100 0 1,587 100 0 897 100 0 981 100 0 2,467 100 0
Staphylcoccus species, coagulase-negative
Oxacillin resistant Ampicillin 13,706 0.1 99.9 2,895 0 100 1,705 0 100 3,251 0.2 99.8 <10 NA NA
Cefepime 874 0 99.9 <10 NA NA 116 0 100 624 10.9 73.2 <10 NA NA
Cefotaxime 4,560 0.1 99.9 198 0.5 99.5 279 0 100 497 21.3 78.5 120 0 100
Ceftriaxone 2,948 0 99.8 90 0 100 453 0.2 99.8 309 0.0 99.7 <10 NA NA
Ciprofloxacin 15,985 32.7 65.8 4,378 33.7 65.3 4,323 34.7 61.9 5,094 16.5 80.2 120 19.2 78.3
Gentamicin 22,824 43.3 44.7 4,503 28.5 57.3 4,543 24.5 69.2 5,585 29.1 62.8 6,600 26.6 71.3
Oxacillin 29,570 0 100 7,286 0 100 5,057 0 100 6,059 0 100 6,904 0 100
Teicoplanin NT NT NT NT NT NT 4,907 92.7 2.8 4,405 95.1 0.8 5,216 79.3 4.5
Vancomycin 29,184 100 0 6,652 100 0 5,040 100 0 5,972 100 0 5,833 100 0
Enterococcus faecalis
Ampicillin 7,865 98.8 1.2 1,000 99.4 0.6 1,289 95.3 4.7 1,902 99.6 0.4 1,183 99.5 0.2
Ciprofloxacin 3,311 56.9 38.7 625 45.3 50.4 1,159 64.0 31.1 2,012 39.7 39.5 559 78.5 17.0
Gentamicin (HL Testing) 5,503 65.1 34.8 706 63.0 36.8 1,156 62.9 37.1 965 64.8 35.2 1,563 63.6 13.4
Teicoplanin NT NT NT <10 NA NA 1,248 97.1 2.4 1,294 99.7 0.2 1,747 99.9 0.1
Vancomycin 7,656 95.1 4.5 1,005 98.3 0.9 1,303 96.7 2.8 1,636 99.4 0.3 1,811 99.7 0.2
Enterococcus faecium
Ampicillin 3,896 9.7 90.3 383 17.2 82.8 260 21.5 78.5 481 12.3 87.7 151 41.7 49.7
Ciprofloxacin 1,846 5.3 92.5 221 10.9 85.5 234 10.3 77.4 591 6.9 73.9 66 21.2 39.4
Gentamicin (HL Testing) 2,512 57.5 42.5 291 59.5 40.5 223 67.7 32.3 349 60.2 39.8 263 65.4 12.2
Teicoplanin 23 8.7 87.0 <10 NA NA 234 86.3 13.7 517 97.9 2.1 266 99.6 0.4
Vancomycin 4,066 23.2 76.3 415 85.1 14.5 264 75.4 24.2 628 93.9 4.8 247 98.4 0.8

aNCCLS breakpoints were used for all countries, except (CA-SFM) bNot tested cNot applicable if <10 isolates were tested

Table 3.

S. pneumoniae, S. pyogenes, S. agalactiae, and Viridans group streptococci isolated from ICU patients during 2000–2002

United States Canada Italy Germany Francea





Organism Agent Total n %S %R Total n %S %R Total n %S %R Total n %S %R Total n %S %R
Streptococcus pneumoniae Amoxicillin 120 91.7 2.5 31 100 0 60 93.3 6.7 17 100 0 1,328 71.2 2.3
Cefepime 22 90.9 4.5 25 60.0 12.0 66 90.9 7.6 NTb NT NT <10 NAc NA
Cefotaxime 1,571 82.2 6.3 145 93.8 0.7 108 93.5 4.6 63 100 0 1,181 77.1 0.8
Ceftriaxone 2,373 88.3 3.2 145 91.7 0.7 145 91.7 3.4 29 100 0 544 80.1 0.6
Clarithromycin 184 71.7 25.5 56 69.6 30.4 90 64.4 31.1 <10 NA NA NT NT NT
Erythromycin 3,029 67.9 30.5 539 78.5 20.8 313 69.6 28.1 405 88.6 9.4 1,567 59.0 38.8
Levofloxacin 2,133 99.1 0.4 356 98.6 1.1 174 98.3 0.6 340 99.4 0.3 62 98.4 1.6
Penicillin 3,096 51.5 20.2 325 59.1 7.1 198 77.3 7.6 102 96.1 2.0 1,387 45.5 17.9
Vancomycin 2,865 100 -c 271 100 - 231 100 - 190 100 - 1,479 100 -
Streptococcus pyogenes
Amoxicillin NT NT NT NT NT NT NT NT NT NT NT NT 58 100 0
Cefepime <10 NA NA NT NT NT NT NT NT NT NT NT NT NT NT
Cefotaxime 32 100 - 29 100 - <10 NA NA 11 100 - 30 100 -
Ceftriaxone 75 100 - <10 NA NA <10 NA NA <10 NA NA <10 NA NA
Clarithromycin 19 84.2 5.3 <10 NA NA 17 88.2 11.8 NT NT NT NT NT NT
Erythromycin 118 92.4 6.8 102 81.4 11.8 59 74.6 23.7 63 84.1 11.1 170 82.9 14.7
Levofloxacin 71 97.2 1.4 <10 NA NA <10 NA NA 61 77.0 4.9 NT NT NT
Penicillin 140 100 - 97 100 - 58 100 - 64 100 - 139 100 -
Vancomycin 121 100 - 42 100 - 12 100 - 34 100 - 162 100 -
Streptococcus agalactiae
Amoxicillin NT NT NT NT NT NT NT NT NT NT NT NT 165 100 0
Cefepime 28 100 - NT NT NT <10 NA NA NT NT NT NT NT NT
Cefotaxime 71 100 - 17 100 - 24 100 - 50 100 - 50 100 -
Ceftriaxone 184 100 - <10 NA NA 38 100 - 37 100 - <10 NA NA
Clarithromycin 21 81.0 9.5 <10 NA NA 21 71.4 28.6 NT NT NT <10 NA NA
Erythromycin 489 76.3 21.7 222 82.9 14.9 121 77.7 18.2 192 83.9 10.9 588 79.9 16.2
Levofloxacin 333 97.9 1.2 <10 NA NA 51 98.0 0 180 91.1 1.7 173 99.4 0
Penicillin 518 100 - 226 100 - 145 100 - 184 100 - 369 100 -
Vancomycin 463 100 - 179 100 - 143 100 - 65 100 - 526 100 -
Streptococcus viridans group
Amoxicillin NT NT NT NT NT NT NT NT NT NT NT NT 268 92.9 0.7
Cefepime 23 95.7 4.3 NT NT NT 12 66.7 33.3 NT NT NT NT NT NT
Cefotaxime 434 83.6 11.1 101 92.1 4.0 31 90.3 9.7 75 97.3 2.7 56 94.6 0
Ceftriaxone 678 87.3 7.7 130 89.2 3.8 99 81.8 18.2 40 97.5 2.5 <10 NA NA
Clarithromycin 34 52.9 38.2 21 76.2 19.0 21 71.4 23.8 <10 NA NA NT NT NT
Erythromycin 959 57.2 37.7 289 71.6 23.2 192 64.6 32.8 796 88.1 9.2 626 59.9 31.6
Levofloxacin 331 96.1 2.7 <10 NA NA 16 87.5 0 93 89.2 4.3 <10 NA NA
Penicillin 1,047 63.7 6.2 303 79.2 0 61 78.7 8.2 <10 NA NA 452 69.0 3.1
Vancomycin 1,095 100 - 276 100 - 180 100 - 277 100 - 580 100 -

aNCCLS breakpoints were used for all countries, except France (CA-SFM) bNot tested cBreakpoints do not currently exist to interpret as S (susceptible) or R (resistant)

Table 4.

Enterobacteriaceae isolated from ICU patients during 2000–2002

United States Canada Italy Germany Francea





Organism Agent Total n %S %R Total n %S %R Total n %S %R Total n %S %R Total n %S %R
Escherichia coli Cefepime 10,356 98.1 1.5 207 98.1 1.9 1,426 98.1 1.4 2,830 98.6 1.2 4,358 98.9 0.6
Cefotaxime 9,086 96.5 2.2 3,231 96.3 2.5 1,748 94.5 3.8 5,828 97.8 1.8 9,362 98.8 0.6
Ceftazidime 14,574 95.3 3.0 4,438 97.7 1.6 2,548 94.7 3.7 3,924 97.9 1.6 9,164 97.8 1.2
Ceftriaxone 15,897 97.4 1.7 3,829 96.8 2.2 1,423 94.4 4.2 534 99.8 0.2 834 98.6 1.0
Ciprofloxacin 17,294 89.0 10.7 5,028 90.3 9.5 2,616 87.0 12.7 4,615 86.7 12.4 8,577 93.1 6.5
Gentamicin 20,581 92.4 6.5 6,654 92.8 5.3 2,650 92.2 6.6 4,825 94.3 5.2 9,442 95.4 4.2
Imipenem 15,353 100 0 3,386 100 0 2,254 100 0 5,172 100 0 8,994 100 0
Levofloxacin 14,920 88.2 11.6 776 85.1 13.9 496 86.5 13.3 3,137 88.2 11.0 NTb NT NT
Piperacillin-tazobactam 13,573 93.1 3.6 4,305 95.1 2.4 1,879 95.8 2.4 5,637 93.6 3.4 7,255 95.4 1.1
Trimethoprim-sulfamethoxazole 20,296 79.2 20.7 6,737 84.6 15.3 2,440 75.0 24.9 5,598 73.1 26.6 9,028 78.2 21.1
Klebsiella oxytoca
Cefepime 1,476 96.2 3.3 19 100 0 255 99.6 0 566 96.8 2.7 478 97.1 0.4
Cefotaxime 1,324 92.7 4.7 486 94.2 4.5 230 96.5 1.7 1,117 93.8 4.4 865 96.3 0.8
Ceftazidime 1,909 91.7 7.0 661 94.9 4.1 361 83.4 15.2 749 95.3 4.5 870 98.3 0.5
Ceftriaxone 2,035 89.9 6.6 536 93.8 2.8 197 81.7 2.0 83 97.6 0 79 87.3 2.5
Ciprofloxacin 2,226 92.5 5.9 745 96.0 3.0 368 96.7 3.0 905 90.1 7.8 815 94.5 4.8
Gentamicin 2,569 89.9 8.3 857 95.0 4.9 366 89.6 3.0 1,016 98.2 1.2 865 97.1 2.4
Imipenem 2,061 100 0 516 100 0 337 100 0 1,062 100 0 845 100 0
Levofloxacin 1,754 93.3 3.4 159 96.9 1.3 133 97.0 3.0 560 94.6 3.2 NT NT NT
Piperacillin-tazobactam 1,801 82.7 13.9 624 91.2 7.1 313 81.8 11.2 1,113 78.9 18.1 742 88.3 10.4
Trimethoprim-sulfamethoxazole 2,467 92.5 7.5 863 96.3 3.6 308 95.1 4.9 1,084 93.7 6.3 802 94.1 5.7
Klebsiella pneumoniae
Cefepime 7,276 95.8 3.4 98 100 0 552 93.5 5.6 1,068 95.7 3.5 840 95.6 3.0
Cefotaxime 6,243 91.0 6.1 1,411 97.9 1.5 850 76.7 16.4 2,414 93.1 6.0 1,553 94.4 1.9
Ceftazidime 9,597 88.5 10.1 2,238 97.5 2.2 1,142 69.8 28.5 1,665 90.0 8.2 1,591 92.5 5.2
Ceftriaxone 10,337 92.7 4.7 1,736 97.9 1.1 816 75.2 15.0 166 98.8 0.6 112 86.6 5.4
Ciprofloxacin 11,089 89.9 8.4 2,484 91.8 7.2 1,190 88.2 9.9 2,128 85.4 9.4 1,473 89.5 8.7
Gentamicin 13,012 91.6 7.0 2,906 96.7 2.9 1,211 81.4 14.5 2,065 91.6 6.1 1,553 97.1 2.7
Imipenem 10,263 100 0 1,766 100 0 1,066 100 0 2,351 100 0 1,567 100 0
Levofloxacin 9,626 91.0 6.4 485 93.4 3.7 287 78.4 21.3 1,228 92.6 4.4 NT NT NT
Piperacillin-tazobactam 9,359 85.9 7.4 2,160 91.5 2.7 746 82.2 14.6 2,408 84.9 8.3 1,286 89.4 5.1
Trimethoprim-sulfamethoxazole 12,641 88.6 11.1 2,924 92.8 7.1 1,103 82.0 18.0 2,324 82.2 17.2 1,443 88.2 10.9
Morganella morganii
Cefepime 566 95.9 2.3 <10 NA NA 121 97.5 2.5 262 94.7 5.0 412 96.1 0.2
Cefotaxime 499 78.8 8.4 156 91.0 3.8 144 74.3 6.3 437 86.7 3.9 678 81.1 5.9
Ceftazidime 715 73.6 17.3 256 79.7 10.9 213 75.6 15.0 313 84.0 7.7 673 78.6 8.0
Ceftriaxone 806 91.1 2.2 219 96.3 1.4 125 91.2 3.2 22 86.4 0 57 84.2 5.3
Ciprofloxacin 841 78.1 20.7 292 94.2 4.5 220 87.3 9.5 344 97.7 2.0 634 88.6 8.5
Gentamicin 967 84.0 14.1 329 94.5 4.6 222 90.1 8.6 378 96.8 2.1 679 95.6 3.4
Imipenem 784 100 0 196 100 0 206 100 0 402 100 0 649 99.8 0
Levofloxacin 725 78.1 19.3 42 95.2 4.8 55 90.9 9.1 251 98.0 1.6 NT NT NT
Piperacillin-tazobactam 725 91.2 5.1 254 97.2 1.6 150 94.0 3.3 430 94.2 3.5 564 91.0 4.6
Trimethoprim-sulfamethoxazole 936 75.1 24.7 329 91.8 8.2 193 79.8 20.2 435 93.1 6.9 627 83.9 14.2
Proteus mirabilis
Cefepime 1,964 98.2 1.0 20 100 0 395 87.6 11.4 599 99.2 0.8 736 99.0 0.1
Cefotaxime 1,794 99.1 0.5 295 99.7 0 441 69.4 23.4 1,209 98.8 0.7 1,503 99.5 0.1
Ceftazidime 2,684 98.0 1.1 463 99.4 0.2 630 86.0 9.4 821 98.5 1.0 1,505 99.3 0.2
Ceftriaxone 3,034 99.4 0.3 392 99.5 0 385 80.5 13.8 77 98.7 0 72 100 0
Ciprofloxacin 3,169 85.2 12.7 504 95.2 4.6 657 70.6 22.7 980 92.9 5.1 1,424 90.9 6.8
Gentamicin 3,796 91.5 7.7 698 92.6 7.2 670 61.6 37.2 992 92.9 5.9 1,509 91.3 7.9
Imipenem 2,850 100 0 367 100 0 580 100 0 1,020 100 0 1,319 100 0
Levofloxacin 2,825 87.8 10.5 94 100 0 202 61.9 34.7 688 96.5 2.3 <10 NAc NA
Piperacillin-tazobactam 2,715 97.7 0.8 449 98.2 0.2 465 95.7 2.8 1,201 98.6 0.8 1,231 99.3 0.2
Trimethoprim-sulfamethoxazole 3,706 85.2 14.7 708 89.4 10.6 615 61.6 38.0 1,159 80.8 19.1 1,411 79.7 18.6
Serratia marcescens
Cefepime 3,653 96.7 2.3 52 96.2 1.9 497 96.8 2.2 546 94.1 3.5 509 98.6 0.2
Cefotaxime 3,134 87.0 5.7 670 92.8 2.7 470 79.6 9.8 951 84.0 7.5 809 81.5 3.3
Ceftazidime 4,718 89.7 7.9 1,113 95.2 3.0 738 81.4 13.3 851 89.7 7.5 812 94.7 3.0
Ceftriaxone 4,710 90.5 4.6 846 95.4 1.7 444 86.7 6.3 160 45.6 0 115 77.4 4.3
Ciprofloxacin 5,006 91.0 6.7 1,292 85.0 11.7 757 83.5 4.5 978 72.6 12.4 787 78.9 10.5
Gentamicin 5,905 92.9 5.9 1,313 94.6 5.2 758 97.4 2.1 665 92.9 6.3 808 91.6 6.6
Imipenem 4,960 100 0 880 100 0 727 100 0 1,018 100 0 805 100 0
Levofloxacin 4,356 94.3 4.2 264 92.4 4.2 266 95.5 1.5 595 87.6 6.6 <10 NA NA
Piperacillin-tazobactam 4,337 88.1 5.1 1,155 91.6 3.3 547 92.7 3.8 1,053 77.6 3.1 749 82.6 2.4
Trimethoprim-sulfamethoxazole 5,697 95.9 3.9 1,325 94.9 5.1 646 81.4 18.6 908 88.1 10.9 699 84.1 13.6

aNCCLS breakpoints were used for all countries, except France (CA-SFM) bNot tested cNot applicable if <10 isolates were tested

Table 5.

P. aeruginosa and Acinetobacter spp isolated from ICU patients during 2000–2002

United States Canada Italy Germany France





Organism Agent Total n %S %R Total n %S %R Total n %S %R Total n %S %R Total n %S %R
Acinetobacter species Cefepime 5,162 43.8 40.2 97 67.0 23.7 475 17.9 73.7 623 74.2 10.8 857 28.0 40.3
Cefotaxime 3,830 23.3 49.9 705 36.7 34.9 555 11.0 78.7 1,254 34.9 24.6 671 15.4 38.7
Ceftazidime 5,954 42.2 40.8 1,162 70.8 22.9 692 25.6 68.5 988 66.7 14.5 1,106 34.9 35.5
Ceftriaxone 4,709 16.3 55.9 874 32.4 28.7 452 8.8 72.6 104 42.3 11.5 81 9.9 51.9
Ciprofloxacin 5,808 39.7 58.0 1,156 72.1 25.9 686 21.1 76.7 1,126 74.8 22.9 1,038 37.7 61.2
Gentamicin 6,618 47.2 47.2 1,185 72.8 22.8 768 23.3 72.4 979 82.0 14.1 936 49.3 43.5
Imipenem 6,006 87.0 7.5 918 95.8 1.9 569 77.9 19.0 1,253 96.2 3.4 1,088 93.8 3.8
Levofloxacin 5,099 43.8 52.2 489 61.1 25.6 295 13.9 75.3 840 82.0 10.5 NTb NT NT
Meropenem 2,154 66.3 26.5 348 93.7 4.9 455 74.5 13.6 1,024 96.0 3.4 147 68.0 28.6
Piperacillin 4,658 35.4 45.9 959 66.5 19.5 635 19.5 69.9 1,171 59.7 12.9 805 35.0 50.3
Piperacillin-tazobactam 3,429 53.6 28.5 903 70.7 23.1 425 35.1 46.4 1,225 81.8 7.5 878 74.5 10.5
Trimethoprim-sulfamethoxazole 5,697 51.4 48.4 1,155 74.8 25.2 750 44.1 55.7 1,234 83.6 15.6 93 45.2 52.7
Pseudomonas aeruginosa
Cefepime 20,220 72.5 12.4 371 73.3 12.4 5,056 58.9 28.9 3,483 80.3 7.8 7,967 52.6 16.2
Cefotaxime 11,283 9.2 50.4 1,836 13.3 47.5 4,181 6.0 70.7 2,689 7.7 52.2 NT NT NT
Ceftazidime 26,353 71.2 17.4 6,036 73.7 13.4 7,640 56.7 31.3 5,141 76.2 14.9 8,547 70.2 14.9
Ceftriaxone 14,066 12.1 56.4 2,847 11.3 59.7 3,383 8.4 70.4 154 26.6 7.8 NT NT NT
Ciprofloxacin 26,700 62.8 33.1 5,924 67.2 30.2 7,388 58.4 38.8 4,746 68.6 24.4 8,560 55.3 40.6
Gentamicin 29,268 69.4 21.5 5,951 72.2 15.9 7,522 52.2 41.7 3,913 74.0 14.3 7,327 44.0 46.1
Imipenem 26,076 73.5 22.1 3,775 77.9 18.2 7,057 59.7 27.8 4,412 70.5 19.0 8,575 69.5 21.4
Levofloxacin 21,059 62.7 31.7 713 56.8 33.5 2,427 44.9 51.0 2,953 68.0 23.9 NT NT NT
Meropenem 7,540 76.0 18.2 1,266 80.3 14.5 4,082 57.3 32.7 4,351 77.8 13.8 1,818 81.1 6.4
Piperacillin 22,855 77.7 22.2 5,520 80.9 18.8 7,004 63.1 36.7 4,554 81.7 14.1 8,454 64.1 24.1
Piperacillin-tazobactam 21,848 85.5 14.4 4,190 91.0 9.0 5,252 77.7 22.0 4,746 85.8 10.7 8,256 69.6 15.9
Trimethoprim-sulfamethoxazole 15,618 3.6 96.4 4,283 4.0 96.0 7,054 4.1 95.8 3,375 4.2 95.8 NT NT NT

aNCCLS breakpoints were used for all countries, except France (CA-SFM) bNT = not tested

Results

In vitro susceptibility data from over 220,000 isolates from ICUs in five countries over the period 2000–2002 were assimilated. The most frequent species isolated from infections in the ICU was S. aureus, being most common in three of the five countries (Table 1). The oxacillin resistance rates among S. aureus varied markedly across countries from 19.7% in Canada to 59.5% in Italy. E. coli (7.7%–15.5%) and P. aeruginosa (10.8%–22.3%) were the most frequent Gram-negative organisms encountered. The Gram-positive genus Enterococcus, either as E. faecalis, E. faecium or non-speciated isolates accounted for <10% of isolates in most countries with E. faecalis being the most common species <4.3%. Community-acquired respiratory pathogens such as Streptococcus pneumoniae and Haemophilus influenzae were relatively uncommon in all five countries.

Table 1.

Incidence of pathogens isolated from ICU patients by country (%)

United States Canada Italy Germany France





Organism Incidence (%) Organism Incidence (%) Organism Incidence (%) Organism Incidence (%) Organism Incidence (%)
S. aureusa 20.2 S. aureusa 17.4 P. aeruginosa 22.3 CNS 16.4 S. aureus1 17.2
CNSb 15.9 CNS 16.1 CNS 18.7 S. aureusa 13.6 CNS 16.7
P. aeruginosa 13.1 E. coli 12.6 S. aureusa 18.1 E. coli 12.3 E. coli 15.5
E. coli 9.2 P. aeruginosa 11.3 E. coli 7.7 P. aeruginosa 10.8 P. aeruginosa 13.8
K. pneumoniae 5.8 Enterococcus spp 7.6 E. faecalis 3.9 Enterococcus spp 7.4 S. pneumoniae 3.3
Enterococcus spp 5.4 K. pneumoniae 5.5 K. pneumoniae 3.5 K. pneumoniae 5.4 E. cloacae 3.3
E. cloacae 4.3 E. cloacae 4.2 Enterococcus spp 3.3 E. cloacae 4.7 E. faecalis 3.0
E. faecalis 3.7 S. marcenscens 2.5 E. cloacae 2.6 E. faecalis 4.3 K. pneumoniae 2.7
S. marcescens 2.7 H. influenzae 2.1 S. marcescens 2.2 P. mirabilis 2.6 P. mirabilis 2.5
A. baumanii 2.6 E. faecalis 2.1 P. mirabilis 1.9 K. oxytoca 2.4 Enterococcus spp 2.3
Enterobacteriaceaec (all species combined) 29.5 Enterobacteriaceae (all species combined) 33.0 Enterobacteriaceae (all species combined) 30.2 Enterobacteriaceae (all species combined) 36.0 Enterobacteriaceae (all species combined) 32.1
Total (n) 26,624 Total (n) 54,445 Total (n) 34,609 Total (n) 48,385 Total (n) 62,459

aProportion of S. aureus testing as MRSA was USA (52.3%), Canada (19.7%), Italy (59.4%), Germany (21.0%), and France (40.6%) bCNS = Coagulase-negative staphylococci cEnterobacteriaceae includes all species of genera occurring at >0.1%

Tables 2,3,4,5 show the antimicrobial susceptibility profiles of various Gram-positive and Gram-negative pathogens isolated from ICU patients against a range of relevant antimicrobials.

Specifically notable susceptibility patterns include the vancomycin susceptibility of all strains of staphylococci. Generally, there was a low proportion of vancomycin resistant E. faecalis <5%, whereas vancomycin-resistant E. faecium was more prevalent ranging from 0.8% in France to 76.3% in the United States, with a wide inter-country variation (Table 2). Penicillin resistance rates varied among S. pneumoniae, from 2.0% in Germany to 20.2% in the US with concurrent ceftriaxone resistance rates of 0% in Germany to 3.4% in Italy (Table 3).

β-lactam activity was assessed by comparing four different cephalosporins and a β-lactam/β-lactamase inhibitor combination, piperacillin-tazobactam. Overall, the putative production of ESBLs among E. coli was low, <6%, but ceftazidime resistance was reported at higher rates in K. pneumoniae and S. marcescens, with the highest rates seen in M. morganii, from 16.0% in Germany to 26.4% in the United States (Table 4). Among the gram-negative organisms tested, ceftriaxone resistance rates were usually lower than ceftazidime, with the exception among P. aeruginosa and Acinetobacter spp. Cefepime, a fourth generation cephalosporin with anti-pseudomonal activity was also more active than ceftazidime (Table 5). Against the Enterobacteriaceae, the β-lactam combination agent piperacillin-tazobactam was generally less active than ceftriaxone. These species showed a wide variation in fluoroquinolone susceptibility among both species and countries. Gentamicin resistance rates among the Enterobacteriaceae varied from 1.2% among K. oxytoca from Germany to 37.2% in P. mirabilis from Italy. Ciprofloxacin resistance rates among E. coli ranged from 6.5% in France to 12.7% in Italy. Variable fluoroquinolone resistance rates among S. marcescens were also demonstrated, with a range of resistance from 4.5% in Italy to 12.4% in Germany.

Discussion

Data derived from international surveillance studies, such as those presented here, can provide a unique contemporary perspective on the susceptibility of commonly encountered organisms to commonly used antibiotics. Such surveillance systems play a crucial role in detecting emerging trends in resistance. Comparisons of these with data of other recent surveillance programs show the wide variations in susceptibility profiles and the need for ongoing unit-specific surveys.

In Germany the prevalence of resistance among gram-positive organisms remained comparatively low with an incidence of 21% MRSA. In 2000, Frank et al. reported that 96% of German isolates of S. marcescens and M. morganii were susceptible to ceftazidime, yet in this study we found 89.7% and 84.0%, respectively [9]. A similar decrease in activity was noted with E. coli and ciprofloxacin between the two studies, 91% in 1996–1997 compared with 86.7% in this study. Marked decreases in susceptibility of P. aeruginosa in Germany were also evident, with no agent showing >85.8% susceptibility (piperacillin-tazobactam) compared with most agents having 85%–94% susceptibility in 1996–1997. Changes of 15–20% have been reported with ceftazidime, imipenem, ciprofloxacin and meropenem, while piperacillin-tazobactam has shown the smallest decrease in susceptibility with <6% over the 4-year period. Piperacillin plus or minus tazobactam and cefepime were the most active agents, based on susceptibility, against P. aeruginosa in Germany. Conversely, ceftriaxone and imipenem were the most active agents, based on susceptibility, against Klebsiella spp., which account for almost 8% of ICU isolates.

Staphylococcal species from French ICU isolates showed a high proportion of oxacillin resistance, 40.6% and 69. 9% of S. aureus and coagulase-negative staphylococci spp., respectively. S. pneumoniae showed penicillin resistance of 17.9%, higher than the other four countries, although the activity of third-generation cephalosporins, ceftriaxone and cefotaxime, showed only 0.6% and 0.8% resistance, respectively. Despite a lower ceftazidime susceptibility breakpoint compared to NCCLS standards (MIC 4 μg/ml instead of 8 μg/ml) putative ESBL expression were slightly lower in France than in Germany in 2000–2002. Ceftazidime non-susceptibility rates among E. coli, K. oxytoca, and P. mirabilis were ≤ 2.2%; however, ceftazidime non-susceptibility rates among K. pneumoniae, M. morganii and S. marcescens were 7.5%, 21.4%, and 5.3%, respectively. Imipenem was active against all Enterobacteriaceae. Against P. aeruginosa and Acinetobacter spp., imipenem resistance rates were 21.4% and 3.8%, respectively. Previously, a lower imipenem resistance of 24% among French isolates of P. aeruginosa was reported [7].

Among the Italian isolates of staphylococci, oxacillin resistance occurred in 59.4% of S. aureus and 84.8% of coagulase-negative isolates. This MRSA rate was similar to that reported by Frank et al. from bacteremic isolates in Italy; however, they reported an increase in MRSA from 25% to 55% over the period 1997 to 2001 [18]. Vancomycin resistance rates of 2.8% for E. faecalis and 24.2% for E. faecium are some of the highest rates recorded in Europe, although still modest compared to rates experienced in the United States; however, teicoplanin was more active with 2.4% and 13.7% of strains being resistant, respectively. Pneumococcal resistance to penicillin and erythromycin was 7.6% and 28.1%, respectively. The impact of alterations in penicillin-binding protein that reduce penicillin susceptibility have less effect on the activity of third-generation cephalosporins such as ceftriaxone with 3.4% and cefotaxime with 4.6% resistance, respectively. S. pyogenes was fully susceptible to penicillin; however, 11.8% of isolates were resistant to clarithromycin and 23.7% were resistant to erythromycin.

The proportion of ESBLs was slightly higher in Italy with E. coli showing ceftazidime non-susceptibility of 5.3%, whereas K. pneumoniae and K. oxytoca demonstrated 30.2% and 16.6% ceftazidime non-susceptibility, respectively. Fluoroquinolone resistance rates among the Enterobacteriaceae, using ciprofloxacin as a marker, varied from 3.0% for K. oxytoca to 22.7% for P. mirabilis, and 12.7% for E. coli. Thus, among Enterobacteriaceae, ciprofloxacin was generally less active than the third-generation cephalosporin, ceftriaxone. P. aeruginosa and Acinetobacter spp. strains from Italian ICUs demonstrated significant resistance rates. Isolates of P. aeruginosa showed resistance rates of >28% for all agents tested except piperacillin-tazobactam. Thus empiric therapy for possible pseudomonal infections will require combination therapy. Acinetobacter spp. showed a similar lack of susceptibility except to imipenem and meropenem (19.0% and 13.6% resistant). An increase in fluoroquinolone resistance in E. coli and K. pneumoniae in bacteremic isolates from Italy was observed during 1997–2001, with rates of 26.7% and 24%, respectively [9]. An increase in ureidopenicillin resistance was noted in P. aeruginosa isolates in Italy from 30% to 37% in a 4-year period [9]. This study showed 22.0% piperacillin-tazobactam and 36.7% piperacillin resistance among ICU P. aeruginosa isolates.

In Canada oxacillin-resistance among S. aureus was noted in 19.7% and coagulase-negative staphylococci in 79.4%. Vancomycin resistance was reported among 0.9% and 14.5% of E. faecalis and E. faecium, respectively. The lowest rate of penicillin resistance in S. pneumoniae in this study was noted from Canada at 7.1%; however, clarithromycin resistance was 30.4%. Ceftriaxone showed 0.7% resistance whereas cefepime exhibited 12.0% resistance among pneumococci from the ICU.

Overall the susceptibility rates for Gram-negative isolates from Canadian ICUs were higher than those in the other four countries examined. A low rate of ESBLs was reported, but there was variable activity of piperacillin-tazobactam which showed >9% resistance among Klebsiella spp. and S. marcescens tested. The rate of fluoroquinolone resistance was similar to those of other countries with E. coli showing 13.9% levofloxacin resistance. Among Enterobacteriaceae, <10% of most species were resistant to third-generation cephalosporins tested with the exception of ceftazidime and M. morganii. Resistance among P. aeruginosa and Acinetobacter spp. was generally lower than in other countries apart from Germany. Only piperacillin-tazobactam showed reliable activity against P. aeruginosa (9% resistant), while resistance to all other agents was >19%. Acinetobacter spp. remained susceptible to only the carbapenems, imipenem and meropenem.

Comparison of the data from Canadian isolates with those from the United States shows some significant differences. This demonstrates the limitations of pooling Canadian and United States data since the differences between the two regions, such as the rate of MRSA, may have some impact on empiric therapy. Data from the NNIS system has previously reported an increasing trend towards resistance within ICUs in the United States [19]. Oxacillin resistance among staphylococci from ICUs in the United States was 52.3% and 84.2% for S. aureus and coagulase-negative species, respectively.

This value is identical to that of S. aureus and very similar to the CNS data reported by the 1999 NNIS system. The NNIS highlighted a 37% increase in MRSA over the period 1994–98 to 1999, but only a 2% increase among CNS strains [4]. Vancomycin resistance in the United States was observed in 4.5% of E. faecalis; however, over 76% E. faecium were vancomycin non-susceptible.

Although streptococci are uncommon ICU pathogens they can be rapidly invasive and possibly fatal unless adequate therapeutic approaches are adopted. S. pneumoniae in the United States has acquired a range of resistance mechanisms with resistance to penicillin and the macrolides, clarithromycin and erythromycin, being common, 20.2% and 25.5%–30.5% respectively. The newer generation cephalosporins, ceftriaxone, cefotaxime and cefepime showed good activity against pneumococci, 3.2%, 6.3% and 4.5% resistant, respectively. Less than 1.0% of isolates were resistant to levofloxacin. These data are similar to other recent reports [20].

For Enterobacteriaceae which account for approximately 30% of all isolates from ICU infections, the incidence of putative ESBLs was low in E. coli, 4.7% but ceftazidime non-susceptibility was higher in K. oxytoca 8.3%,K. pneumoniae 11.5%,S. marcescens 10.3% and M. morganii 26.4%. These data are consistent with other recent reports [21]. Fluoroquinolone resistance was observed in all Enterobacteriaceae tested, in the US for example, resistance rates were as follows, using ciprofloxacin as a marker: E. coli 10.7%, K. oxytoca 5.9%, K. pneumoniae 8.4%, M. morganii 20.7%, P. mirabilis 12.7% and S. marcescens 6.7%. These data show increased fluoroquinolone resistance compared with recent reports [21]. Jones et al. previously reported susceptibility data on ICU pathogens isolated over the period 1998–2001 [22].

Specifically, enteric bacteria showed changes over this time. Fluoroquinolone resistance doubled among E. coli isolates from 3.3–5.5% to 10.8–11.4% [22]. This study showed a generally higher level of activity among third-generation cephalosporins than other reports [23], with ceftriaxone showing <10% resistance rates against most species tested. Piperacillin-tazobactam showed less consistent activity with some species being >14% resistant, e.g. Klebsiella spp.,P. aeruginosa, and Acinetobacter spp. present significant therapeutic challenges in ICUs in the United States. With the exception of cefepime, all other tested antimicrobials demonstrated >12% resistance to P. aeruginosa, many considerably higher. Piperacillin-tazobactam showed the next lowest resistance rate, 14.4%, with all other agents having rates of 17% or higher. Non-susceptibility to ciprofloxacin among P. aeruginosa was 37.2%, higher than in the Neuberger report. Sahm et al. reported a 10% increase in fluoroquinolone resistance among P. aeruginosa in the United States, whereas resistance emerged more slowly with the other classes of antimicrobials tested [12]. Acinetobacter infections continue to present significant therapeutic challenges due to the extensive resistance mechanisms demonstrated by the >25% resistance shown in Table 5. Only imipenem has any reliable activity against Acinetobacter spp. with an 87% susceptibility rate.

There are several implications of these data. It is essential that local surveillance programs be maintained in each country's ICU setting. The local data are vital to the formulary committees as they select appropriate agents to treat infections. There are clear differences among the five countries studied in this report. Although the predominant pathogens are similar, ongoing surveillance is essential to detect the emergence of resistant species. It is clear that certain classes of compounds are losing activity against the ICU pathogens tested. For example, the fluoroquinolones have reduced susceptibility among many Gram-negative species as well as staphylococci; however, the newer class members have enhanced activity against pneumococci. Advanced-generation cephalosporins have variable activity, with ceftriaxone showing consistently good activity against the Enterobacteriaceae and some staphylococci. Ceftazidime has lost potency due to the emergence of ESBL enzymes and also has diminished activity against P. aeruginosa. Piperacillin-tazobactam is generally active against P. aeruginosa in ICUs. The aminoglycoside, gentamicin has shown continued activity against most Enterobacteriaceae in all five countries, and modest activity against S. aureus but not against CNS strains. The gentamicin susceptibility of P. aeruginosa ranged from 44.0% in France to 74.0% in Germany, whereas Acinetobacter spp . showed more variable gentamicin susceptibility varying from 23.3% in Italy to 82.0% in Germany. These local data should be considered when treating infections in the ICU.

Use of agents with anti-pseudomonal activity such as cefepime, piperacillin-tazobactam or the carbapenems should preferably be reserved for patient types or infections where this pathogen is present or risk factors exist, as per the ATS Community acquired-pneumonia guidelines [24]. A combination of a third-generation cephalosporin such as ceftriaxone with vancomycin may be appropriate for bloodstream infections based upon the NNIS etiology data from 1992–1999.

Conclusions

The current study confirmed the emergence of fluoroquinolone resistance among various Gram-negative species and staphylococci, which may be increasing due to the heightened use of these drugs; however the reported ESBL rates among Enterobacteriaceae was lower than noted in other studies and appeared to be stable. The prevalence of MRSA, perhaps the most significant resistant hospital pathogen, varied among the five countries and appeared to be increasing. Parenteral cephalosporins such as ceftriaxone and cefotaxime remained quite active against Enterobacteriaceae. Up-to-date susceptibility data should be made available as rapidly as possible to physicians so that appropriate targeted empirical therapy can be instituted, this approach can assist in maintaining the activity of the current antimicrobials. While local surveillance studies remain crucial, national surveillance studies such as this can provide an invaluable data source to provide guidance in formulary decision-making.

Authors Contributions

MJ conceived the study, provided data interpretation and drafted the manuscript. DD analyzed the study data; JK and DS provided expert microbiological analysis and interpretation of study data; RW provided clinical expertise in interpretation of data and drafting manuscript. All authors read and approved the final manuscript.

Acknowledgments

Acknowledgments

We thank F. Hoffmann-La Roche Ltd., Basel, Switzerland for financial support of this study. Additionally, we thank the many clinical microbiology laboratories around the world that contribute data to TSN Databases, without whom such studies would not be possible.

Contributor Information

Mark E Jones, Email: mjones@focustechnologies.com.

Deborah C Draghi, Email: ddraghi@focustechnologies.com.

Clyde Thornsberry, Email: cthornsberry@focustechnologies.com.

James A Karlowsky, Email: jkarlowsky@focustechnologies.com.

Daniel F Sahm, Email: dsahm@focustechnologies.com.

Richard P Wenzel, Email: rwenzel@mail2.vcu.edu.

References

  1. Kollef MH, Fraser VJ. Antibiotic resistance in the Intensive Care Unit. Ann Intern Med. 2001;134:298–314. doi: 10.7326/0003-4819-134-4-200102200-00014. [DOI] [PubMed] [Google Scholar]
  2. CDC NNIS system National nosocomial infections surveillance (NNIS) system report, data summary from January 1992-April issued August 2001. Amer J Infect Contr. 2001;29:400–421. doi: 10.1067/mic.2001.118408. Correction 2002, 30:74. [DOI] [PubMed] [Google Scholar]
  3. NNIS system report Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Surveillance report, data summary from January 1996 through December 1997. Amer J Infect Contr. 1999;27:279–284. doi: 10.1053/ic.1999.v27.a98878. [DOI] [PubMed] [Google Scholar]
  4. Fridkin SK, Steward CD, Edwards JR, Pryor ER, McGowan JE, Archibald LK, Gaynes RP, Tenover FC. Surveillance of antimicrobial use and antimicrobial resistance in United States hospitals: Project ICARE Phase 2. Project Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Hospitals. Clin Infec Dis. 1999;29:245–252. doi: 10.1086/520193. [DOI] [PubMed] [Google Scholar]
  5. Stephen J, Mutnick A, Jones RN. Assessment of pathogens and resistance (R) patterns among intensive care unit (ICU) in North America (NA): initial report from the SENTRY antimicrobial surveillance program (2001) Presented at the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA. 2002. Abstract C2-297.
  6. Vincent JL, Bihari DJ, Suter PM, Bruining HA, White J, Nicloas-Chaoin MH, Wolff M, Spencer RC, Hemmer M. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee J Amer Med Assoc. 1995;274:639–644. doi: 10.1001/jama.274.8.639. [DOI] [PubMed] [Google Scholar]
  7. Hanberger H, Garcia-Rodriguez JA, Gobernado M, the French and Portuguese ICU Study Groups et al. Antibiotic susceptibility among aerobic Gram-negative bacilli in Intensive Care Units in 5 European countries. JAMA. 1999;281:67–71. doi: 10.1001/jama.281.1.67. [DOI] [PubMed] [Google Scholar]
  8. Garcia-Rodriguez JA, Jones RN, the MYSTIC study group Antimicrobial resistance in gram-negative isolates from European intensive care units: data from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) programme. J Chem. 2002;14:25–32. doi: 10.1179/joc.2002.14.1.25. [DOI] [PubMed] [Google Scholar]
  9. Frank U, Jonas D, Lupke T, Ribeiro-Ayeh B, Schmidt-Eisenlohr E, Ruden H, Daschner FD, National Reference Centre Study Group on Antimicrobial Resistance Antimicrobial susceptibility among nosocomial pathogens isolated in intensive care units in Germany. Eur J Clin Microbiol Infect Dis. 2000;19:888–891. doi: 10.1007/s100960000389. [DOI] [PubMed] [Google Scholar]
  10. Fiel S. Guidelines and critical pathways for severe hospital-acquired pneumonia. Chest. 2001;119:412–418S. doi: 10.1378/chest.119.2_suppl.412S. [DOI] [PubMed] [Google Scholar]
  11. Laupland KB, Zygun DA, Davies HD, Church DL, Louie TJ, Doig CJ. Incidence and risk factors for acquiring nosocomial urinary tract infection in the critically ill. J Crit Care. 2002;17:50–57. doi: 10.1053/jcrc.2002.33029. [DOI] [PubMed] [Google Scholar]
  12. Sahm DF, Draghi DC, Master RN, Thonsberry C, Jones ME, Karlowsky JA, Critchley IA. Pseudomonas aeruginosa antimicrobial resistance update: US resistance trends from 1998 to 2001. Presented at the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA. 2002. Abstract C2-305.
  13. Sahm DF, Marsilio MK, Piazza G. Antimicrobial resistance in key bloodstream bacterial isolates: electronic surveillance with the surveillance network database – USA. Clin Infect Dis. 1999;29:259–263. doi: 10.1086/520195. [DOI] [PubMed] [Google Scholar]
  14. National Committee for Clinical Laboratory Standards . National Committee for Clinical Laboratory Standards, Wayne PA. 5 2000. Methods for dilution antimicrobial tests for bacteria that grow aerobically; M7-A5. [Google Scholar]
  15. Société Française de Microbiologie, Institut Pasteur Comité de L' Antibiogramme De La Societé Française de Microbiologie Communiqué 2000-2001 (edition Janvier 2001) Société Française de Microbiologie, Institut Pasteur, 28, rue du Dr Roux, F 75724 Paris Cedex 15, France. 2001.
  16. National Committee for Clinical Laboratory Standards Performance standards for antimicrobial susceptibility testing; Eleventh Informational Supplement, M100-S11. National Committee for Clinical Laboratory Standards, Wayne PA, USA. 2001.
  17. Hadziyannis E, Tuohy M, Thomas L, Procop GW, Washington JA, Hal GS. Screening and confirmatory testing for extended spectrum β-lactamases (ESBL) in E. coli, Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates. Diagn Microbiol Infect Dis. 2000;36:113–117. doi: 10.1016/S0732-8893(99)00117-0. [DOI] [PubMed] [Google Scholar]
  18. Frank UK, Daschner FD, Leibovici L. Antimicrobial susceptibility patterns of bacteremic isolates from university hospitals in Denmark, Germany, Italy and Israel. Presented at the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA. 2002. Abstract C2-301.
  19. Fridkin SK. Increasing prevalence of antimicrobial resistance in intensive care units. Crit Care Med. 2001;29:64–68. doi: 10.1097/00003246-200104001-00002. [DOI] [PubMed] [Google Scholar]
  20. Jones ME, Blosser-Middleton RS, Critchley IA, Thornsberry C, Karlowsky JA, Sahm DF. The activity of levofloxacin and comparator agents against clinical isolates of Streptococcus pneumoniae during 1999–2000. Chemotherapy. 2002;48:232–237. doi: 10.1159/000066769. [DOI] [PubMed] [Google Scholar]
  21. Neuberger MM, Weinstein RA, Rydman R, Danzinger LH, Quinn JP. Antibiotic resistance among Gram-negative bacilli in US intensive care units. Implications for fluoroquinolone use. J Amer Medical Assoc. 2003;289:885–888. doi: 10.1001/jama.289.7.885. [DOI] [PubMed] [Google Scholar]
  22. Jones ME, Draghi DC, Master RN, Thornsberry C, Karlowsky JA, Critchley IA, Sahm DF. Trends in resistance among Enterobacteriaceae (isolated from in-patients and intensive-care unit patients in the US from 1998 to 2001. Presented at the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA. 2002. Abstract C2-311.
  23. Friedland I, Stinson L, Ikaiddi M, Harm S, Woods G. Resistance in Enterobacteriaceae: results of a multicenter US ICU surveillance study (ISS), 1995-2000. Presented at the 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy, San Diego, CA. 2002. Abstract C2-313.
  24. Guidelines for the Management of Adults with Community-acquired Pneumonia. Am J Respir Crit Care Med. 2001;163:1730–1754. doi: 10.1164/ajrccm.163.7.at1010. [DOI] [PubMed] [Google Scholar]

Articles from Annals of Clinical Microbiology and Antimicrobials are provided here courtesy of BMC

RESOURCES