Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1975 Jun;55(6):960–967. doi: 10.1104/pp.55.6.960

Acetyl Coenzyme A-Glutamate Acetyltransferase and N2-Acetylornithine-Glutamate Acetyltransferase of Chlorella

Clayton J Morris 1, John F Thompson 1
PMCID: PMC541747  PMID: 16659227

Abstract

The enzymic formation of acetylglutamate has been studied in Chlorella vulgaris extracts. Acetyl CoA and N2-acetyl-l-ornithine served as substrates for glutamate acetylation whereas acetylphosphate, N5-acetyl-l-ornithine, and N2-acetyl-2,4-diamino butyrate were ineffective. Acetyl CoA-glutamate transacetylase and acetylornithine-glutamate transacetylase activities have been purified over 180-fold with no indication of any separation of activities. The acetyl CoA activity was more labile than acetylornithine activity so that preparations having acetylornithine-glutamate transacetylase activity but no acetyl CoA-glutamate transacetylase activity were obtained. The two acetylating activities appear to be properties of one enzyme with one portion more easily denatured.

Both acetylating activities had pH optima between 8 and 8.5. The Km value for glutamate was 3 mm for both activities. The Km values were 0.2 mm for acetylornithine and 3.2 mm for acetyl CoA. Arginine inhibited acetyl CoA-glutamate transacetylase (Ki = 0.94 mm) and acetylglutamate phosphokinase (Ki = 0.5 mm) but had no effect on acetylornithine-glutamate transacetylase. The lack of an inhibitory effect of proline on any of the three enzymic activities indicates that acetylglutamate is not a normal intermediate in proline biosynthesis. Growth of Chlorella with arginine as a nitrogen source had no effect on enzyme levels, showing that end-product repression is not a control factor in arginine biosynthesis in Chlorella. In Chlorella, arginine controls its own biosynthesis by inhibiting acetylglutamate phosphokinase and controls the level of acetylated intermediates by inhibiting acetyl CoA-glutamate transacetylase.

Full text

PDF
960

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker J. E., Thompson J. F. Metabolism of Urea & Ornithine Cycle Intermediates by Nitrogen-Starved Cells of Chlorella vulgaris. Plant Physiol. 1962 Sep;37(5):618–624. doi: 10.1104/pp.37.5.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  3. DEDEKEN R. H. BIOSYNTH'ESE DE L'ARGININE CHEZ LA LEVURE. I. LE SORT DE LA N-ALPHA-AC'ETYLORINITHINE. Biochim Biophys Acta. 1963 Dec 13;78:606–616. doi: 10.1016/0006-3002(63)91026-6. [DOI] [PubMed] [Google Scholar]
  4. FAHIEN L. A., SCHOOLER J. M., GEHRED G. A., COHEN P. P. STUDIES ON THE MECHANISM OF ACTION OF ACETYLGLUTAMATE AS AN ACTIVATOR OF CARBAMYL PHOSPHATE SYNTHETASE. J Biol Chem. 1964 Jun;239:1935–1941. [PubMed] [Google Scholar]
  5. Faragó A., Dénes G. Mechanism of arginine biosynthesis in Chlamydomonas reinhardti. II. Purification and properties of N-acetylglutamate 5-phosphotransferase, the allosteric enzyme of the pathway. Biochim Biophys Acta. 1967 Feb 7;136(1):6–18. doi: 10.1016/0304-4165(67)90315-7. [DOI] [PubMed] [Google Scholar]
  6. Garrett R. H., Nason A. Further purification and properties of Neurospora nitrate reductase. J Biol Chem. 1969 Jun 10;244(11):2870–2882. [PubMed] [Google Scholar]
  7. Hoare D. S., Hoare S. L. Feedback regulation of arginine biosynthesis in blue-green algae and photosynthetic bacteria. J Bacteriol. 1966 Aug;92(2):375–379. doi: 10.1128/jb.92.2.375-379.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lesinger T., Haas D., Hegarty M. P. Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta. 1972 Mar 14;262(2):214–219. doi: 10.1016/0005-2787(72)90235-3. [DOI] [PubMed] [Google Scholar]
  10. MORRIS C. J., THOMPSON J. F. The isolation and characterization of gamma-L-glutamyl-L-tyrosine and gamma-L-glutamyl-L-phenylalanine from soybeans. Biochemistry. 1962 Jul;1:706–709. doi: 10.1021/bi00910a026. [DOI] [PubMed] [Google Scholar]
  11. Maas W. K., Novelli G. D., Lipmann F. Acetylation of Glutamic Acid by Extracts of Escherichia Coli. Proc Natl Acad Sci U S A. 1953 Oct;39(10):1004–1008. doi: 10.1073/pnas.39.10.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morris C. J., Thompson J. F. Conversion of m-carboxyphenylalanine to m-carboxyphenylglycine in Wedgewood iris leaves. Arch Biochem Biophys. 1965 Jun;110(3):506–510. doi: 10.1016/0003-9861(65)90443-1. [DOI] [PubMed] [Google Scholar]
  13. Morris C. J., Thompson J. F., Johnson C. M. Metabolism of Glutamic Acid and N-Acetylglutamic Acid in Leaf Discs and Cell-free Extracts of Higher Plants. Plant Physiol. 1969 Jul;44(7):1023–1026. doi: 10.1104/pp.44.7.1023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nason A., Antoine A. D., Ketchum P. A., Frazier W. A., 3rd, Lee D. K. Formation of assimilatory nitrate reductase by in vitro inter-cistronic complementation in Neurospora crassa. Proc Natl Acad Sci U S A. 1970 Jan;65(1):137–144. doi: 10.1073/pnas.65.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roon R. J., Levenberg B. CO2 fixation and the involvement of allophanate in the biotin-enzyme-catalyzed cleavage of urea. J Biol Chem. 1970 Sep 10;245(17):4593–4595. [PubMed] [Google Scholar]
  16. Rosen B. P. Basic amino acid transport in Escherichia coli. J Biol Chem. 1971 Jun 10;246(11):3653–3662. [PubMed] [Google Scholar]
  17. Shigesada K., Tatibana M. Enzymatic synthesis of acetylglutamate by mammalian liver preparations and its stimulation by arginine. Biochem Biophys Res Commun. 1971 Sep;44(5):1117–1124. doi: 10.1016/s0006-291x(71)80201-2. [DOI] [PubMed] [Google Scholar]
  18. Sorger G. J., Giles N. H. Genetic control of nitrate reductase in Neurospora crassa. Genetics. 1965 Oct;52(4):777–788. doi: 10.1093/genetics/52.4.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Staub M., Dénes G. Mechanism of arginine biosynthesis in Chlamydomonas reinhardti. I. Purification and properties of ornithine acetyltransferase. Biochim Biophys Acta. 1966 Oct 17;128(1):82–91. doi: 10.1016/0926-6593(66)90144-5. [DOI] [PubMed] [Google Scholar]
  20. THOMPSON J. F., GERING R. K. Preparation of N alpha-acetylornithine. Arch Biochem Biophys. 1962 Nov;99:326–327. doi: 10.1016/0003-9861(62)90018-8. [DOI] [PubMed] [Google Scholar]
  21. Whitney P. A., Cooper T. G. Requirement for HCO3- by ATP: urea amido-lyase in yeast. Biochem Biophys Res Commun. 1970 Aug 24;40(4):814–819. doi: 10.1016/0006-291x(70)90975-7. [DOI] [PubMed] [Google Scholar]
  22. Whitney P. A., Cooper T. G. Urea carboxylase and allophanate hydrolase. Two components of adenosine triphosphate:urea amido-lyase in Saccharomyces cerevisiae. J Biol Chem. 1972 Mar 10;247(5):1349–1353. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES