Skip to main content
Journal of Cellular and Molecular Medicine logoLink to Journal of Cellular and Molecular Medicine
. 2007 May 1;6(1):1–12. doi: 10.1111/j.1582-4934.2002.tb00307.x

Thrombospondin‐1 as an endogenous inhibitor of angiogenesis and tumor growth

Jack Lawler 1,
PMCID: PMC6740251  PMID: 12003665

Abstract

Thrombospondin‐1 (TSP‐1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP‐1. However, the TSP‐1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP‐1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP‐1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor β in those tumor cells that are responsive to TGFβ. In this review, the molecular basis for the role of TSP‐1 in the inhibition of tumor growth and angiogenesis is summarized.

Keywords: thrombombospondin, neoplasia, angiogenesis, matrix metalloproteinase, transforming growth factor β

References

  • 1. Bale M.D., Westrick L.G., Mosher D.F., Incorporation of thrombospondin into fibrin clots, J. Biol. Chem., 260: 7502–8, 1985. [PubMed] [Google Scholar]
  • 2. Kyriakides T.R., Zhu Y.‐H., Smith L.T., Bain S.D., Yang Z., Lin M.T., Danielson K.G., Iozzo R.V., LaMarca M., McKinney C.E., Ginns E.I., Bornstein P., Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density and a bleeding disorder, J. Cell Biol., 140: 419–430, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3. Bornstein P, Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1, J. Cell. Biol., 130: 503–6, 1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Chen H., Herndon M.E., Lawler J., The cell biology of thrombospondin‐1, Matrix Biology, 19: 597–614, 2000. [DOI] [PubMed] [Google Scholar]
  • 5. Brown L.F., Guidi A.J., Schnitt S.J., van de Water L., Iruela‐Arispe M.L., Yeo T.‐K., Tognazzi K., Dvorak H.F., Vascular stroma formation in carcinoma of the breast, Clin. Cancer Res., 5: 1041–1056, 1999. [PubMed] [Google Scholar]
  • 6. Beckmann G., Hanke J., Bork P., Reich J.G., Merging extracellular domains: fold prediction for laminin G‐like and amino‐terminal thrombospondin‐like modules based on homology to pentraxins, J. Mol. Biol., 275: 725–30, 1998. [DOI] [PubMed] [Google Scholar]
  • 7. Chen H., Aeschlimann D., Nowlen J., Mosher D.F., Expression and initial characterization of recombinant mouse thrombospondin‐1 and thrombospondin‐3, F.E.B.S. Lett., 387: 36–41, 1996. [DOI] [PubMed] [Google Scholar]
  • 8. Krutzsch H.C., Choe B.J., Sipes J.M., Guo N., Roberts D.D., Identification of an alpha(3)beta(1) integrin recognition sequence in thrombospondin‐1, J. Biol. Chem., 274: 24080–6, 1999. [DOI] [PubMed] [Google Scholar]
  • 9. Chandrasekaran S., Guo N.H., Rodrigues R.G., Kaiser J., Roberts D.D., Pro‐adhesive and chemotactic activities of thrombospondin‐1 for breast carcinoma cells are mediated by alpha(3)beta(1) integrin and regulated by insulin‐like growth factor‐1 and CD98, J. Biol. Chem., 274: 11408–16, 1999. [DOI] [PubMed] [Google Scholar]
  • 10. Tolsma S.S., Volpert O.V., Good D.J., Frazier W.A., Polverini P.J., Bouck N., Peptides derived from two separate domains of the matrix protein thrombospondin‐1 have anti‐angiogenic activity. J. Cell Biol., 122: 497–511, 1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Dawson D.W., Volpert O.V., Pearce S.F.A., Schneider A.J., Silverstein R.L., Henkin J., Bouck N.P., Three distinct D‐amino acid substitutions confer potent antiangiogenic activity on an inactive peptide derived from a thrombospondin‐1 type 1 repeat, Moec. Pharmacol., 55: 332–338, 1999. [DOI] [PubMed] [Google Scholar]
  • 12. Venter J.C., Adams M.D., Myers E.W., Li P.W., Mural R.J., Sutton G.G., Smith H.O., Yandell M., Evans C.A., Holt R.A., Gocayne J.D., Amanatides P., Ballew R.M., Huson D.H., Wortman J.R., Zhang Q., Kodira C.D., Zheng X.H., Chen L., Skupski M., et al., The sequence of the human genome, Science, 291: 1304–51, 2001. [DOI] [PubMed] [Google Scholar]
  • 13. Adams J.C., Tucker R.P., The thrombospondin type 1 repeat (TSR) superfamily: diverse proteins with related roles in neuronal development, Dev. Dyn., 218: 280–99, 2000. [DOI] [PubMed] [Google Scholar]
  • 14. Lawler J., The functions of thrombospondin‐1 and‐2, Curr. Opin. Cell Biol., 12: 634–640, 2000. [DOI] [PubMed] [Google Scholar]
  • 15. Murphy‐Ullrich J.E., Poczatek M., Activation of latent TGF‐beta by thrombospondin‐1: mechanisms and physiology, Cytokine Growth Factor Rev., 11: 59–69, 2000. [DOI] [PubMed] [Google Scholar]
  • 16. Schultz‐Cherry S., Chen H., Mosher D.F., Misenheimer T.M., Krutzsch H.C., Roberts D.D., Murphy‐Ullrich J.E., Regulation of transforming growth factor‐beta activation by discrete sequences of thrombospondin 1, J. Biol. Chem., 270: 7304–7310, 1995. [DOI] [PubMed] [Google Scholar]
  • 17. Ribeiro S.M.F., Poczatek M., Schultz‐Cherry S., Villain M., Murphy‐Ullrich J.E.M., The activation sequence of thrombospondin‐1 interacts with the latency‐associated peptide to regulate activation of latent transforming growth factor‐β, J. Biol. Chem., 274: 13586–13593, 1999. [DOI] [PubMed] [Google Scholar]
  • 18. Lawler J., Sunday M., Thibert V., Duquette M., George E.L., Rayburn H., Hynes R.O., Thrombospondin‐1 is required for normal murine pulmonary homeostasis and its absence causes pneumonia, J. Clin. Invest., 101: 982–992, 1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19. Crawford S.E., Stellmach V., Murphy‐Ullrich J.E., Ribeiro S.M.F., Lawler J., Hynes R.O., Boivin G.P., Bouck N., Thrombospondin‐1 is a major activator of TGF‐β1 in vivo , Cell, 93: 1159–1170, 1998. [DOI] [PubMed] [Google Scholar]
  • 20. Abdelouahed M., Ludlow A., Brunner G., Lawler J., Activation of platelet transforming growth factorbeta 1 in the absence of thrombospondin‐1, J. Biol. Chem., 275: 17933–17936, 2000. [DOI] [PubMed] [Google Scholar]
  • 21. Grainger D.J., Frow E.K., Thrombospondin 1 does not activate transforming growth factor beta1 in a chemically defined system or in smooth‐muscle‐cell cultures, Biochem. J., 350: 291–8, 2000. [PMC free article] [PubMed] [Google Scholar]
  • 22. Bailly S., Brand C., Chambaz E.M., Feige J.J., Analysis of small latent transforming growth factorbeta complex formation and dissociation by surface plasmon resonance. Absence of direct interaction with thrombospondins, J. Biol. Chem., 272: 16329–34, 1997. [DOI] [PubMed] [Google Scholar]
  • 23. Hofsteenge J., Huwiler K.G., Macek B., Hess D., Lawler J., Mosher D.F., Peter‐Katalinic J., Cmannosylation and O‐fucosylation of the thrombospondin type 1 module, J. Biol. Chem., 276: 6485–98, 2001. [DOI] [PubMed] [Google Scholar]
  • 24. Misenheimer T.M., Mosher D.F., Calcium ion binding to thrombospondin‐1, J. Biol. Chem., 270: 1729–1733, 1995. [DOI] [PubMed] [Google Scholar]
  • 25. Lawler J., Simons E., Cooperative binding of calcium to thrombospondin, J. Biol. Chem., 258: 12098–12101, 1983. [PubMed] [Google Scholar]
  • 26. Lawler J., Derick L.H., Connolly J.E., Chen J.‐H., Chao F.C., The structure of human platelet thrombospondin, J. Biol. Chem., 260: 3762–3772, 1985. [PubMed] [Google Scholar]
  • 27. Lawler J., Hynes R.O., The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium binding sites and homologies with several different proteins, J. Cell Biol., 103: 1635–1648, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28. Sun X., Skorstengaard K., Mosher D.F., Disulfides modulate RGD‐inhibitable cell adhesive activity of thrombospondin, J. Cell Biol., 118: 693–701, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29. Gao A.‐G., Lindberg F.P., Finn M.B., Blystone S.D., Brown E.J., Frazier W.A., Integrin‐associated protein is a receptor for the C‐terminal domain of thrombospondin, J. Biol. Chem., 271: 21–24, 1996. [DOI] [PubMed] [Google Scholar]
  • 30. Gao A.‐G., Lindberg F.P., Dimitry J.M., Brown E.J., Frazier W.A., Thrombospondin modulates αvβ3 function through integrin‐associated protein, J. Biol. Chem., 135: 533–544, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Green J.M., Zhelesnyak A., Chung J., Lindberg F.P., Sarfati M., Frazier W.A., Brown E.J., Role of cholesterol in formation and function of a signaling complex involving alphavbeta3, integrin‐associated protein (CD47), and heterotrimeric G proteins, J. Cell. Biol., 146: 673–82, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32. BenEzra D., Griffin B.W., Maftzir G., Aharonov O., Thrombospondin and in vivo angiogenesis induced by basic fibroblast growth factor or lipopolysaccharide, Invest. Ophthalmol. Vis. Sci., 34: 3601–8, 1993. [PubMed] [Google Scholar]
  • 33. Nicosia R.F., Tuszynski G.P., Matrix‐bound thrombospondin promotes angiogenesis in vitro , J. Cell Biol., 124: 183–93, 1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34. Iruela‐Arispe M.L., Lombardo M., Krutzsch H.C., Lawler J., Roberts D.D., Inhibition of angiogenesis by thrombospondin‐1 is mediated by 2 independent regions within the type 1 repeats, Circulation, 100: 1423–31, 1999. [DOI] [PubMed] [Google Scholar]
  • 35. Guo N.‐H., Drutzch H.C., Inman J.K., Roberts D.D., Thrombospondin 1 and type 1 repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells, Cancer Res., 57: 1735–1742, 1997. [PubMed] [Google Scholar]
  • 36. Guo N.‐H., Krutzsch H.C., Negre E., Vogel T., Blake D.A., Roberts D.D., Heparin‐ and sulfatidebinding peptides from the type 1 repeats of human thrombospondin promote melanoma cell adhesion, Proc. Natl. Acad. Sci. USA, 89: 3040–3044, 1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37. Vogel T., Guo N.H., Krutzsch H.C., Blake D.A., Hartman J., Mendelovitz S., Panet A., Roberts D.D., Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparinbinding domain and synthetic peptides from the type I repeats of thrombospondin, J. Cell Biochem., 53: 74–84, 1993. [DOI] [PubMed] [Google Scholar]
  • 38. Panetti T.S., Kudryk B.J., Mosher D.F., Interaction of recombinant procollagen and properdin modules of thrombospondin‐1 with heparin and fibrinogen/fibrin, J. Biol. Chem., 274: 430–437, 1999. [DOI] [PubMed] [Google Scholar]
  • 39. Yu H., Tyrrell D., Cashel J., Guo N., Vogel T., Sipes J.M., Lam L., Fillit H.M., Hartman J., Mendelovitz S., Panel A., Roberts D.D., Specificities of Heparin‐binding Sites from the Amino‐Terminus and Type 1 Repeats of Thrombospondin‐1, Arch. Biochem. Biophys., 374: 13–23, 2000. [DOI] [PubMed] [Google Scholar]
  • 40. Dawson D.W., Pearce S.F.A., Zhong R., Silverstein R.L., Frazier W.A., Bouck N.P., CD36 mediates the in vitro inhibitory effects of thrombospondin‐1 on endothelial cells. J. Cell Biol., 138: 707–717, 1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41. Jimenez B., Volpert O.V., Crawford S.E., Febbraio M., Silverstein R.L., Bouck N., Signals leading to opoptosis‐dependent inhibition of neovascularization by thrombospondin‐1, Nature Medicine, 6: 41–48, 2000. [DOI] [PubMed] [Google Scholar]
  • 42. Dorahy D.J., Lincz L.F., Meldrum C.J., Burns G.F., Biochemical isolation of a membrane microdomain from resting platelets highly enriched in the plasma membrane glycoprotein CD36, Biochem., 319: 67–72, 1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Thorne R.F., Marshall J.F., Shafren D.R., Gibson P.G., Hart I.R., Burns G.F., The integrins alpha(3)beta(1) and alpha(6)beta(1) physically and functionally associate with CD36 in human melanoma cells. Requirement for the extracellular domain of CD36, J. Biol. Chem., 275: 35264–75, 2000. [DOI] [PubMed] [Google Scholar]
  • 44. Miao W., Seng W.L., Duquette M., Laus C., Detmar M., Lawler J., Thrombospondin‐1 type 1 repeat recombinant proteins inhibit tumor growth, Blood, 97: 1689–1696, 2001. [PubMed] [Google Scholar]
  • 45. Jimenez B., Volpert O.V., Reiher F., Chang L., Munoz A., Karin M., Bouck N., c‐Jun N‐terminal kinase activation is required for the inhibition of neovascularization by thrombospondin‐1, Oncogene, 20: 3443–8, 2001. [DOI] [PubMed] [Google Scholar]
  • 46. Nor J.E., Mitra R.S., Sutorik M.M., Mooney D.J., Castle V.P., Polverini P.J., Thrombospondin‐1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway, J. Vasc. Res., 37: 209–18, 2000. [DOI] [PubMed] [Google Scholar]
  • 47. Rodriguez‐Manzaneque J.C., Lane T.F., Ortega M.A., Hynes R.O., Lawler J., Iruela‐Arispe M.L., Thrombospondin‐1 supresses tumor growth by a novel mechanism that includes blockade of matrix metalloproteinase‐9 activation, Proc. Natl. Acad. Sci. USA, 98: 12485–12490, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48. Taraboletti G., Morbidelli L., Donnini S., Parenti A., Granger H.J., Giavazzi R., Ziche M., The heparin binding 25 kDa fragment of thrombospondin‐1 promotes angiogenesis and modulates gelatinase and TIMP‐2 production in endothelial cells, FASEB J., 14: 1674–6, 2000. [DOI] [PubMed] [Google Scholar]
  • 49. de Fraipont F., Nicholson A.C., Feige J.J., van Meir E.G., Thrombospondins and tumor angiogenesis, Trends Mol. Med., 7: 401–7, 2001. [DOI] [PubMed] [Google Scholar]
  • 50. Grant S.W., Kyshtoobayeva A.S., Kurosaki T., Jakowatz J., Fruehauf J.P., Mutant p53 correlates with reduced expression of thrombospondin‐1, increased angiogenesis, and metastatic progression in melanoma, Cancer Detect. Prev., 22: 185–94, 1998. [DOI] [PubMed] [Google Scholar]
  • 51. Grossfeld G.D., Ginsberg D.A., Stein J.P., Bochner B.H., Esrig D., Grosher S., Dunn M., Nichols P.W., Taylor C.R., Skinner D.G., Cote R.J., Thrombospondin‐1 expression in bladder cancer: Association with p53 alterations, tumor angiogenesis and tumor progression, J. Natl. Cancer Institute, 89: 219–227, 1997. [DOI] [PubMed] [Google Scholar]
  • 52. Tokunaga T., Nakamura M., Oshika Y., Tsuchida T., Kazuno M., Fukushima Y., Kawai K., Abe Y., Kijima H., Yamazaki H., Tamaoki N., Ueyama Y., Alterations in tumour suppressor gene p53 correlate with inhibition of thrombospondin‐1 gene expression in colon cancer cells, Virchows Arch., 433: 415–418, 1998. [DOI] [PubMed] [Google Scholar]
  • 53. Tenan M., Fulci G., Albertoni M., Diserens A.C., Hamou M.F., El Atifi‐Borel M., Feige J.J., Pepper M.S., van Meir E.G., Thrombospondin‐1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells, J. Exp. Med., 191: 1789–98, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54. Hsu S.C., Volpert O.V., Steck P.A., Mikkelsen T., Polverini P.J., Rao S., Chou P., Bouck N.P., Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin‐1, Cancer Res., 56: 5684–5691, 1996. [PubMed] [Google Scholar]
  • 55. Janz A., Sevignani C., Kenyon K., Ngo C.V., Thomas‐Tikhonenko A., Activation of the myc oncoprotein leads to increased turnover of thrombospondin‐1 mRNA, Nucleic Acids Res., 28: 2268–75, 2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56. Majack R.A., Cook S.C., Bornstein P., Control of smooth muscle cell growth by components of the extracellular matrix: Autocrine role for thrombospondin, Proc. Natl. Acad. Sci. USA, 83: 9050–9054, 1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Dejong V., Degeorges A., Filleur S., Ait‐Si‐Ali S., Mettouchi A., Bornstein P., Binetruy B., Cabon F., The Wilms' tumor gene product represses the transcription of thrombospondin 1 in response to overexpression of c‐Jun, Oncogene, 18: 3143–51, 1999. [DOI] [PubMed] [Google Scholar]
  • 58. Lawler J., Miao W.M., Duquette M., Bouck N., Bronson R.T., Hynes R.O., Thrombospondin‐1 gene expression affects survival and tumor spectrum of p53‐deficient mice, Am. J. Pathol., 159: 1949–56, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59. Yao L., Zhao Y.L., Itoh S., Wada S., Yue L., Furuta I., Thrombospondin‐1 expression in oral squamous cell carcinomas: correlations with tumor vascularity, clinicopathological features and survival, Oral Oncol., 36: 539–44, 2000. [DOI] [PubMed] [Google Scholar]
  • 60. Bleuel K., Popp S., Fusenig N.E., Stanbridge E.J., Boukamp P., Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin‐1 overexpression through halted tumor vasculature, Proc. Natl. Acad. Sci. (USA), 96: 2065–2070, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61. Clezardin P., Frappart L., Clerget M., Pechoux C., Delmar P.D., Expression of thrombospondin (TSP‐1) and its receptors (CD36 and CD31) in normal, hyperplastic and neoplastic human breast, Cancer Res., 53: 1421–1430, 1993. [PubMed] [Google Scholar]
  • 62. Streit M., Riccardi L., Velasco P., Brown L.F., Hawighorst T., Bornstein P., Detmar M., Thrombospondin‐2: a potent endogenous inhibitor of tumor growth and angiogenesis, Proc. Natl. Acad. Sci. U.S. A., 96: 14888–93, 1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63. Bertin N., Clezardin P., Kubiak R., Frappart L., Thrombospondin‐1 and ‐2 messenger RNA expression in normal, benign and neoplastic human breast tissues: Correlation with prognostic factors, tumor angiogenesis and fibroblastic desmoplasia, Cancer Res., 57: 396–399, 1997. [PubMed] [Google Scholar]
  • 64. Gasparini G., Toi M., Biganzoli E., Dittadi R., Fanelli M., Morabito A., Boracchi P., Gion M., Thrombospondin‐1 and ‐2 in node‐negative breast cancer: correlation with angiogenic factors, p53, cathepsin D, hormone receptors and prognosis, Oncology, 60: 72–80, 2001. [DOI] [PubMed] [Google Scholar]
  • 65. Kerbel R.S., A cancer therapy resistant to resistance, Nature, 390: 335–6, 1997. [DOI] [PubMed] [Google Scholar]
  • 66. Filleur S., Volpert O.V., Degeorges A., Voland C., Reiher F., Clezardin P., Bouck N., Cabon F., In vivo mechanisms by which tumors producing thrombospondin 1 bypass its inhibitory effects, Genes Dev, 15: 1373–82, 2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Cellular and Molecular Medicine are provided here courtesy of Blackwell Publishing

RESOURCES