Abstract
Virus-induced cell fusion has been examined in a series of stable cell lines which were originally selected for resistance to the fusogenic effects of polyethylene glycol (PEG). For a wide variety of viruses, including murine hepatitis virus (a coronavirus), vesicular stomatitis virus (a rhabdovirus), and two paramyxoviruses (Sendai virus and SV5), susceptibility to virus-induced fusion was found to be inversely correlated with susceptibility to PEG-induced fusion. This phenomenon was observed both for cell fusion occurring in the course of viral infection and for fusion induced “from without” by the addition of high titers of noninfectious or inactivated virus. The fusion-altered cell lines (fusible by virus but not by PEG) are characterized by their unusual lipid composition, including marked elevation of saturated fatty acids and the presence of an unusual ether-linked neutral lipid. To test the association between lipid composition and fusion, acyl chain saturation was manipulated by supplementing the culture medium with exogenous fatty acids. In such experiments, it was possible to control the responses of these cells to both viral and chemical fusogens. Increasing the cellular content of saturated fatty acyl chains increased the susceptibility of cells to viral fusion and decreased susceptibility to PEG-induced fusion, whereas lowering fatty acid saturation had the opposite effect. Thus, parallel cultures of cells can be either driven toward the PEG-fusible/virus-fusion-resistant phenotype of the parental cells or rendered susceptible to viral fusion but resistant to PEG-induced fusion, solely by the alteration of cellular lipids. The ability of cellular lipid composition to regulate virus-induced membrane fusion suggests a possible role for lipids in viral infection and pathogenesis
References
- Bang F.B., Warwick A. Vol. 46. 1960. Mouse macrophages as host cells for mouse hepatitis virus and the genetic basis of their susceptibility; pp. 1065–1075. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blenkharn J.I., Apostolov K. The effect of iodination on the haemolytic property and the fatty acids of Newcastle disease virus. Biochim. Biophys. Acta. 1980;597:358–363. doi: 10.1016/0005-2736(80)90112-1. [DOI] [PubMed] [Google Scholar]
- Blenkharn J.I., Apostolov K. The correlation of fatty acid content of infected cells and virions with Newcastle disease virus (NDV) virulence. J. Gen. Virol. 1981;52:355–358. doi: 10.1099/0022-1317-52-2-355. [DOI] [PubMed] [Google Scholar]
- Boyle J.F., Weismiller D.G., Holmes K.V. Genetic resistance to mouse hepatitis virus correlates with absence of virus-binding activity on target tissues. J. Virol. 1987;61:185–189. doi: 10.1128/jvi.61.1.185-189.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bratt M.A., Gallaher W.R. Vol. 64. 1969. Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus; pp. 536–543. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dales S. Early events in cell-animal virus interactions. Bacteriol. Rev. 1973;37:103–135. doi: 10.1128/br.37.2.103-135.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubois-Dalcq M.E., Doller E.W., Haspel M.V., Holmes K.V. Cell tropism and expression of mouse hepatitis viruses (MHV) in mouse spinal cord culture. Virology. 1982;119:317–331. doi: 10.1016/0042-6822(82)90092-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubois-Dalco M.E., Holmes K.V., Rentier B. Springer-Verlag; Vienna: 1984. Assembly of Enveloped RNA Viruses. [Google Scholar]
- Frana M.F., Behnke J.N., Sturman L.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus. II. Host dependent differences in cleavage of E2 and cell fusion. J. Virol. 1985;56:912–920. doi: 10.1128/jvi.56.3.912-920.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallaher W.R., Levitan D.B., Kirwin K.S., Blough H.A. Molecular and biological parameters of membrane fusion. In: Blough H.A., Tiffany J.M., editors. Vol. 1. Academic Press; New York/ London: 1980. pp. 395–457. (Cell Membranes and Viral Envelopes). [Google Scholar]
- Graves M.C., Silver S.M., Choppin P.W. Measles virus polypeptide synthesis in infected cells. Virology. 1978;86:254–263. doi: 10.1016/0042-6822(78)90025-9. [DOI] [PubMed] [Google Scholar]
- Hall W.W., Choppin P.W. Measles virus production in the brain tissue of patients with subacute schlerosing panencephalitis: Absence of the M protein. N. Engl. J. Med. 1981;304:1152–1155. doi: 10.1056/NEJM198105073041906. [DOI] [PubMed] [Google Scholar]
- Harter D.H., Choppin P.W. Cell-fusing activity of Visna virus particles. Virology. 1967;31:279–288. doi: 10.1016/0042-6822(67)90172-9. [DOI] [PubMed] [Google Scholar]
- Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes K.V., Choppin P.W. On the role of the response of the cell membrane in determining virus virulence. Contrasting effects of the parainfluenza virus SV5 in two cell types. J. Exp. Med. 1966;124:501–520. doi: 10.1084/jem.124.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes K.V., Doller E.W., Sturman L.A. Tunicamycin resistant glycosylation of a coronavirus glycoprotein: Demonstration of a novel type of viral glycoprotein. Virology. 1981;115:334–344. doi: 10.1016/0042-6822(81)90115-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes K.V., Frana M.F., Robbins S.G., Sturman L.A. Coronavirus maturation. Adv. Exp. Med. Biol. 1984;173:37–52. doi: 10.1007/978-1-4615-9373-7_4. [DOI] [PubMed] [Google Scholar]
- Hsu M.-C., Scheid A., Choppin P.W. Reconstitution of membranes with individual paramyxovirus glycoproteins and phospholipid in cholate solution. Virology. 1979;95:476–491. doi: 10.1016/0042-6822(79)90502-6. [DOI] [PubMed] [Google Scholar]
- Kit S., Dubbs D.R., Piekarski L.J., Hsu T.C. Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine. Exp. Cell Res. 1963;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
- Kooi C., Mizzen L., Alderson C., Daya M., Anderson R. Early events in determining host cell permissiveness in mouse hepatitis virus infection. J. Gen. Virol. 1988;69:1125–1135. doi: 10.1099/0022-1317-69-6-1125. [DOI] [PubMed] [Google Scholar]
- Li W.D., Ryser H.J.-P., Shen W.C. Altered endocytosis in a mutant of LM fibroblasts defective in cell-cell fusion. J. Cell Physiol. 1986;126:161–166. doi: 10.1002/jcp.1041260203. [DOI] [PubMed] [Google Scholar]
- Lucas A., Flintoff W., Anderson R., Percy D., Coulter M., Dales S. In vivo and in vitro models of demyelinating diseases: Tropism of the JHM strain of murine hepatitis virus for cells of glial origin. Cell. 1977;12:553–560. doi: 10.1016/0092-8674(77)90131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macdonald R.C., Ore V.D., Macdonald R.I. Inhibition of virus-induced hemolysis by long chain fatty acids. Virology. 1984;134:103–117. doi: 10.1016/0042-6822(84)90276-9. [DOI] [PubMed] [Google Scholar]
- Matlin K.S., Hubert R., Helenius A., Simons K. Infectious entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 1981;91:601–613. doi: 10.1083/jcb.91.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCune J.M., Rabin L.B., Feinberg M.B., Lieberman M., Kosek J.C., Reyes G.R., Weissman I.L. Endoproteolytic cleavage of gp 160 is required for the activation of human immunodeficiency virus. Cell. 1988;53:55–67. doi: 10.1016/0092-8674(88)90487-4. [DOI] [PubMed] [Google Scholar]
- Merz D.C., Scheid A., Choppin P.C. Immunological studies of the functions of paramyxovirus glycoproteins. Virology. 1981;109:94–105. doi: 10.1016/0042-6822(81)90474-8. [DOI] [PubMed] [Google Scholar]
- Mizzen L., Cheley S., Rao M., Wolf R., Anderson R. Fusion resistance and decreased infectability as major host cell determinants of coronavirus persistence. Virology. 1983;128:407–417. doi: 10.1016/0042-6822(83)90266-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nozawa C.M., Apostolov K. Association of the cytopathic effect of Sindbis virus with increased fatty acid saturation. J. Gen. Virol. 1982;59:219–222. doi: 10.1099/0022-1317-59-1-219. [DOI] [PubMed] [Google Scholar]
- Robinson J.M., Roos D.S., Davidson R.L., Karnovsky M.L. Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion. J. Cell Sci. 1979;40:63–75. doi: 10.1242/jcs.40.1.63. [DOI] [PubMed] [Google Scholar]
- Röhme D. Quantitative cell fusion: The fusion sensitivity (FS) potential. J. Cell Sci. 1981;49:87–97. doi: 10.1242/jcs.49.1.87. [DOI] [PubMed] [Google Scholar]
- Röhme D., Thorburn D. Quantitative cell fusion: Derivation and application of theoretical models. Somatic Cell Genet. 1981;7:43–57. doi: 10.1007/BF01544747. [DOI] [PubMed] [Google Scholar]
- Roizman B. Vol. 27. 1962. Polykaryocytosls; pp. 327–342. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
- Roos D.S. The Rockefeller University; New York: 1984. Membrane Fusion, Lipid Composition, and Tumorigenicity of Cultured Cells. (Ph.D. thesis). [Google Scholar]
- Roos D.S. Control of cell membrane fusion by lipid composition. In: Ohki S., Doyle D., Flanagan T.D., Hui S.W., Mayhew E., editors. Molecular Mechanisms of Membrane Fusion. Plenum; New York: 1988. pp. 273–288. [Google Scholar]
- Roos D.S. Experimental and technological applications of cell fusion: An overview. In: Wilschut J., Hoekstra D., editors. Membrane Fusion: Cellular Mechanisms and Biotechnological Applications. Dekker; New York: 1990. in press. [Google Scholar]
- Roos D.S., Choppin P.W. Vol. 81. 1984. Tumorigenicity of cell lines with altered lipid composition; pp. 7622–7626. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos D.S., Choppin P.W. Biochemical studies on cell fusion. I. Lipid composition of fusion-resistant cells. J. Cell Biol. 1985;101:1578–1590. doi: 10.1083/jcb.101.4.1578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos D.S., Choppin P.W. Biochemical studies on cell fusion. II. Control of fusion response by lipid alteration. J. Cell Biol. 1985;101:1591–1598. doi: 10.1083/jcb.101.4.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos D.S., Davidson R.L. Isolation of mouse cell lines resistant to the fusion-inducing effect of polyethylene glycol. Somatic Cell Genet. 1980;6:381–390. doi: 10.1007/BF01542790. [DOI] [PubMed] [Google Scholar]
- Roos D.S., Davidson R.L., Choppin P.W. Control of membrane fusion in polyethylene glycol-resistant cells: applications to fusion technology. In: Sowers Arthur E., editor. Cell Fusion. Plenum; New York: 1987. pp. 123–144. [Google Scholar]
- Roos D.S., Robinson J.M., Davidson R.L. Cell fusion and intramembrane particle distribution in polyethylene glycol-resistant cells. J. Cell Biol. 1983;97:909–917. doi: 10.1083/jcb.97.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothfels K.H., Axelrad A.A., Siminovitch L., McCulloch E.A., Parker R.C. Vol. 3. 1959. The origin of altered cell lines from mouse, monkey, and man as indicated by chromosome and transplantation studies; pp. 189–214. (Canad. Cancer Conf.). [Google Scholar]
- Ryser H.J.-P., Li W., Mandel R., Shen W.-C. A stable variant of LM fibroblasts defective in fluid-phase but competent in receptor-mediated endocytosis. J. Cell Physiol. 1988 doi: 10.1002/jcp.1041370314. in press. [DOI] [PubMed] [Google Scholar]
- Spear P.G. Virus-induced cell fusion. In: Sowers A.E., editor. Cell Fusion. Plenum; New York: 1987. pp. 3–32. [Google Scholar]
- Spector A.A., Kiser R.E., Denning G.M., Koh S.-W.M., Debault L.E. Modification of the fatty acid composition of cultured human fibroblasts. J. Lipid Res. 1979;20:536–547. [PubMed] [Google Scholar]
- Sturman L.A., Ricard C.S., Holmes K.V. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus. I. Activation of cell fusing activity of virions by trypsin treatment and separation of two different 90K cleavage fragments. J. Virol. 1985;56:904–911. doi: 10.1128/jvi.56.3.904-911.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturman L.A., Takemoto K.K. Enhanced growth of murine coronavirus in transformed mouse cells. Infect. Immun. 1972;6:501–507. doi: 10.1128/iai.6.4.501-507.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tardieu M., Boespflug O., Barbé Selective tropism of a neurotropic coronavirus for ependymal cells, neurons, and meningeal cells. J. Virol. 1986;60:574–582. doi: 10.1128/jvi.60.2.574-582.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Dinter S., Flintoff W.F. Rat glial C6 cells are defective in murine coronavirus internalization. J. Gen. Virol. 1987;68:1677–1685. doi: 10.1099/0022-1317-68-6-1677. [DOI] [PubMed] [Google Scholar]
- Wang E.W., Roos D.S., Heggeness M.H., Choppin P.W. Vol. 46. 1982. Function of cytoplasmic fibers in syncytia; pp. 997–1012. (Cold Spring Harbor Symp. Quant. Biol.). [DOI] [PubMed] [Google Scholar]
- Wege H., Siddell S., ter Meulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
- White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q. Rev. Biophys. 1983;16:151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
- White J., Matlin M., Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis virus. J. Cell Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]