Abstract
Feline coronavirus (FCoV) persistence and evolution were studied in a closed cat-breeding facility with an endemic serotype I FCoV infection. Viral RNA was detected by reverse transcriptase polymerase chain reaction (RT-PCR) in the feces and/or plasma of 36 of 42 cats (86%) tested. Of 5 cats, identified as FCoV shedders during the initial survey, 4 had detectable viral RNA in the feces when tested 111 days later. To determine whether this was due to continuous reinfection or to viral persistence, 2 cats were placed in strict isolation and virus shedding in the feces was monitored every 2–4 days. In 1 of the cats, virus shedding continued for up to 7 months. The other animal was sacrificed after 124 days of continuous virus shedding in order to identify the sites of viral replication. Viral mRNA was detected only in the ileum, colon, and rectum. Also in these tissues, FCoV-infected cells were identified by immunohistochemistry. These findings provide the first formal evidence that FCoV causes chronic enteric infections. To assess FCoV heterogeneity in the breeding facility and to study viral evolution during chronic infection, FCoV quasispecies sampled from individual cats were characterized by RT-PCR amplification of selected regions of the viral genome followed by sequence analysis. Phylogenetic comparison of nucleotides 7–146 of ORF7b to corresponding sequences obtained for independent European and American isolates indicated that the viruses in the breeding facility form a clade and are likely to have originated from a single founder infection. Comparative consensus sequence analysis of the more variable region formed by residues 79–478 of the S gene revealed that each cat harbored a distinct FCoV quasispecies. Moreover, FCoV appeared to be subject to immune selection during chronic infection. The combined data support a model in which the endemic infection is maintained by chronically infected carriers. Virtually every cat born to the breeding facility becomes infected, indicating that FCoV is spread very efficiently. FCoV-infected cats, however, appear to resist superinfection by closely related FCoVs.
Footnotes
S. G. Siddell, Ed.
References
REFERENCES
- 1.Addie D.D., Jarrett J.O. A study of naturally occurring feline coronavirus infections in kittens. Vet. Rec. 1992;130:133–137. doi: 10.1136/vr.130.7.133. [DOI] [PubMed] [Google Scholar]
- 2.Addie D.D., Toth S., Herrewegh A.A.P.M., Jarrett O. Feline coronavirus in the intestinal contents of cats with feline infectious peritonitis. Vet. Rec. 1996;139:522–523. doi: 10.1136/vr.139.21.522. [DOI] [PubMed] [Google Scholar]
- 3.Cavanagh D. The Coronaviridae. Plenum; New York: 1995. The coronavirus surface glycoprotein. p. 73–113. [Google Scholar]
- 4.Chen C.M, Cavanagh D., Britton P. Cloning and sequencing of a 8.4-kb region from the 3′-end of a Taiwanese virulent isolate of the coronavirus transmissible gastroenteritis virus. Virus Res. 1995;38:83–89. doi: 10.1016/0168-1702(95)00046-S. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Dayhoff M.O. Atlas of protein sequence and structure. Natl. Biomed. Res. Found. 1979;5 [Google Scholar]
- 6.de Groot R.J., Andeweg A.C., Horzinek M.C., Spaan W.J.M. Sequence analysis of the 3′-end of the feline coronavirus FIPV 79-1146 genome: Comparison with the genome of porcine coronavirus TGEV reveals large insertions. Virology. 1988;167:370–376. doi: 10.1016/0042-6822(88)90097-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.de Groot R.J., Horzinek M.C. Feline infectious peritonitis. In: Siddell S.G., editor. The Coronaviridae. Plenum; New York: 1995. pp. 293–309. [Google Scholar]
- 8.de Groot R.J., Maduro J., Lenstra J.A., Horzinek M.C., Van der Zeijst B.A.M., Spaan W.J.M. cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. J. Gen. Virol. 1987;68:2639–2646. doi: 10.1099/0022-1317-68-10-2639. [DOI] [PubMed] [Google Scholar]
- 9.de Groot R.J., Ter Haar R.J., Horzinek M.C., Van der Zeijst B.A.M. Intracellular RNAs of the feline infectious peritonitis coronavirus strain 79-1146. J. Gen. Virol. 1987;68:995–1002. doi: 10.1099/0022-1317-68-4-995. [DOI] [PubMed] [Google Scholar]
- 10.de Groot R.J., Luytjes W., Horzinek M.C., Van der Zeijst B.A.M., Spaan W.J.M., Lenstra J.A. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J. Mol. Biol. 1987;196:963–966. doi: 10.1016/0022-2836(87)90422-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.de Vries A.A.F., Horzinek M.C., Rottier P.J.M., de Groot R.J. The genome organisation of the Nidovirales: Similarities and differences among arteri-, toro- and coronaviruses. Semin. Virol. 1997;8:33–48. doi: 10.1006/smvy.1997.0104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Delmas B., Gelfi J., L'Haridon R., Vogel L.K., Sjostrom H., Noren O., Laude H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature. 1992;357:417–420. doi: 10.1038/357417a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Domingo E., Escarmis C., Sevilla N., Moya A., Elena S.F., Quer J., Novella I.S., Holland J.J. Basic concepts in RNA virus evolution. FASEB. 1996;10:859–864. doi: 10.1096/fasebj.10.8.8666162. [DOI] [PubMed] [Google Scholar]
- 14.Duarte E.A., Novella I.S., Weaver S.C., Domingo E., Wain-Hobson S., Clarke D.K., Moya A., Elena S.F., de la Torre J.C., Holland J.J. RNA virus quasispecies: Significance for viral disease and epidemiology. Infect. Agents Dis. 1994;3:201–214. [PubMed] [Google Scholar]
- 15.Egberink H.F., Herrewegh A.P.M., Schuurman N.M.P., van der Linde-Sipman J.S., Horzinek M.C., de Groot R.J. FIP, easy to diagnose? Vet. Q. 1995;17:24–25. [PubMed] [Google Scholar]
- 16.Eigen M. Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971;58:465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
- 17.Eigen M., Biebricher C.K. In: RNA Genetics. Domingo E., Holland J.J., Ahlquist P., editors. CRC Press; Boca Raton: 1988. pp. 211–245. [Google Scholar]
- 18.Eigen M., Schuster P. The Hypercycle: A Principle of Natural Self-Organization. Springer; Berlin/Heidelberg/New York: 1979. [DOI] [PubMed] [Google Scholar]
- 19.Fehr D., Bolla S., Herrewegh A.A., Horzinek M.C., Lutz H. Detection of feline coronavirus using RT-PCR: Basis for the study of the pathogenesis of feline infectious peritonitis (FIP) Schweiz. Arch. Tierheilkd. 1996;138:74–79. [PubMed] [Google Scholar]
- 20.Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. [DOI] [PubMed] [Google Scholar]
- 21.Fleming J.O., Houtman J.J., Alaca H., Hinze H.C., McKenzie D., Aiken J., Bleasdale T., Baker S. Persistence of viral RNA in the central nervous system of mice inoculated with MHV-4. In: Laude H., Vautherot F.J., editors. Coronaviruses. Plenum; New York: 1994. pp. 327–332. [DOI] [PubMed] [Google Scholar]
- 22.Griffin J.D., Ritz J., Nadler L.M., Schlossman S.F. Expression of myeloid differentiation antigens on normal and malignant myeloid cells. J. Clin. Invest. 1981;68:932–941. doi: 10.1172/JCI110348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Herrewegh A.A.P.M., de Groot R.J., Cepica A., Egberink H.F., Horzinek M.C., Rottier P.J.M. Detection of feline coronavirus RNA in feces, tissue, and body fluids of naturally infected cats by reverse transcriptase PCR. J. Clin. Microbiol. 1995;33:684–689. doi: 10.1128/jcm.33.3.684-689.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Herrewegh A.A.P.M., Vennema H., Horzinek M.C., Rottier P.J.M., de Groot R.J. The molecular genetics of feline coronaviruses: Comparative sequence analysis of the ORF7a/7b transcription unit of different biotypes. Virology. 1995;212:622–631. doi: 10.1006/viro.1995.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Higgins D.G., Sharp P.M. Fast and sensitive multiple sequence alignments on a micro computer. Comput. Appl. Biosci. 1989;5:151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
- 26.Hingley S.T., Gombold J.L., Lavi E., Weiss S.R. MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology. 1994;200:1–10. doi: 10.1006/viro.1994.1156. [DOI] [PubMed] [Google Scholar]
- 27.Hirano N., Goto S., Makino S., Fujiwara K. Persistent infection with mouse hepatitis virus JHM strain in DBT cell culture. In: ter Meulen V., Siddell S., Wege H., editors. Biochemistry and Biology of Coronaviruses. Plenum; New York: 1981. pp. 301–308. [DOI] [PubMed] [Google Scholar]
- 28.Hofmann M.A., Sethna P.B., Brian D.A. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J. Virol. 1990;64:4108–4114. doi: 10.1128/jvi.64.9.4108-4114.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Hohdatsu T., Okada S., Koyama H. Characterization of monoclonal antibodies against feline infectious peritonitis virus type II and antigenic relationship between feline, porcine, and canine coronaviruses. Arch. Virol. 1991;117:85–95. doi: 10.1007/BF01310494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Hohdatsu T., Sasamoto T., Okada S., Koyama H. Antigenic analysis of feline coronaviruses with monoclonal antibodies (MAbs): Preparation of MAbs which discriminate between FIPV strain 79-1146 and FECV strain 79-1683. Vet. Microbiol. 1991;28:13–24. doi: 10.1016/0378-1135(91)90096-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Holland J.J., De La Torre J.C., Steinhauer D.A. In: Genetic Diversity of RNA Viruses. Holland J.J., editor. Springer-Verlag; Berlin/Heidelberg/New York: 1992. pp. 1–20. [Google Scholar]
- 32.Holmes E.C., Zhang L.Q., Simmonds P., Ludlam C.A., Leigh Brown A.J. Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient. Proc. Natl. Acad. Sci. USA. 1992;89:4835–4839. doi: 10.1073/pnas.89.11.4835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Holmes K.V., Behnke J.N. Evolution of coronavirus during persistent infection in vitro. In: ter Meulen V., Siddell S., Wege H., editors. Biochemistry and Biology of Coronavirus. Plenum; New York: 1981. pp. 287–299. [DOI] [PubMed] [Google Scholar]
- 34.Horsburgh B.C., Brierley I., Brown T.D. Analysis of a 9.6 kb sequence from the 3′ end of canine coronavirus genomic RNA. J. Gen. Virol. 1992;73:2849–2862. doi: 10.1099/0022-1317-73-11-2849. [DOI] [PubMed] [Google Scholar]
- 35.Jackson D.P., Percy D.H., Morris V.L. Characterization of murine hepatitis virus (JHM) RNA from rats with experimental encephalomyelitis. Virology. 1984;137:297–304. doi: 10.1016/0042-6822(84)90221-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Jacobse-Geels H.E.L., Horzinek M.C. Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J. Gen. Virol. 1983;64:1859–1866. doi: 10.1099/0022-1317-64-9-1859. [DOI] [PubMed] [Google Scholar]
- 37.Jameson B.A., Wolf H. The antigenic index: A novel algorithm for predicting antigenic determinants. Comput. Appl. Biosci. 1988;4:181–186. doi: 10.1093/bioinformatics/4.1.181. [DOI] [PubMed] [Google Scholar]
- 38.Kapke P., Brian D.A. Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology. 1986;151:41–49. doi: 10.1016/0042-6822(86)90102-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Kass P.H., Dent T.H. The epidemiology of feline infectious peritonitis in catteries. Feline Pract. 1995;23:27–32. [Google Scholar]
- 40.Kimura M. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980;16:111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- 41.Knobler R.L., Lampert P.W., Oldstone M.B.A. Virus persistence and recurring demyelination produced by a temperature-sensitive mutant of MHV-4. Nature. 1982;298:279–280. doi: 10.1038/298279a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Kurosaki M., Enomoto N., Marumo F., Sato C. Evolution and selection of hepatitis C virus variants in patients with chronic hepatitis C. Virology. 1994;205:161–169. doi: 10.1006/viro.1994.1631. [DOI] [PubMed] [Google Scholar]
- 43.E. L. Lewis, 1996, University of Bristol, Bristol, UK
- 44.Look A.T., Ashmun R.A., Shapiro L.H., Peiper S.C. Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase N. J. Clin. Invest. 1989;83:1299–1307. doi: 10.1172/JCI114015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.MacIntyre G., Wong F., Anderson R. A model for persistent murine coronavirus infection involving maintenance via cytopathically infected cell centres. J. Gen. Virol. 1989;70:763–768. doi: 10.1099/0022-1317-70-3-763. [DOI] [PubMed] [Google Scholar]
- 46.K. McIntosh, 1990, Coronaviruses, Virology, B. N. FieldsD. M. Knipe, 857, 864, Raven Press, New York
- 47.Mizzen L., Cheley S., Rao M., Wolf R., Anderson R. Fusion resistance decreased infectability as major host cell determinants of coronavirus persistence. Virology. 1983;128:407–417. doi: 10.1016/0042-6822(83)90266-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Morris V.L., Tieszer C., Mackinnon J., Percy D. Characterization of coronavirus JHM variants isolated from Wistar Furth rats with a viral-induced demyelinating disease. Virology. 1989;169:127–136. doi: 10.1016/0042-6822(89)90048-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Motokawa K., Hohdatsu T., Aizawa C., Koyama H., Hashimoto H. Molecular cloning and sequence determination of the peplomer protein gene of feline infectious peritonitis virus type I. Arch. Virol. 1995;140:469–480. doi: 10.1007/BF01718424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Motokawa K., Hohdatsu T., Hashimoto H., Koyama H. Comparison of the amino acid sequence and phylogenetic analysis of the peplomer, integral membrane and nucleocapsid proteins of feline, canine and porcine coronaviruses. Microbiol. Immunol. 1996;40:425–433. doi: 10.1111/j.1348-0421.1996.tb01089.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Neutra M.R., Frey A., Kraehenbuhl J.P. Epithelial M cells: Gateways for mucosal infection and immunization. Cell. 1996;86:345–348. doi: 10.1016/s0092-8674(00)80106-3. [DOI] [PubMed] [Google Scholar]
- 52.Parham D., Tereba A., Talbot P.J., Jackson D.P., Morris V.L. Analysis of JHM central nervous system infections in rats. Arch. Neurol. 1986;43:702–708. doi: 10.1001/archneur.1986.00520070058019. [DOI] [PubMed] [Google Scholar]
- 53.Pedersen N.C. Serologic studies of naturally occurring feline infectious peritonitis. Am. J. Vet. Res. 1976;37:1449–1453. [PubMed] [Google Scholar]
- 54.Pedersen N.C. Morphologic and physical characteristics of feline infectious peritonitis virus and its growth in autochthonous peritoneal cell cultures. Am. J. Vet. Res. 1976;37:567–572. [PubMed] [Google Scholar]
- 55.Pedersen N.C. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv. Exp. Med. Biol. 1987;218:529–550. doi: 10.1007/978-1-4684-1280-2_69. [DOI] [PubMed] [Google Scholar]
- 56.Pedersen N.C., Black J.W., Boyle J.F., Evermann J.F., McKeirnan A.J., Ott R.L. In: Molecular Biology and Pathogenesis of Coronaviruses. Rottier P.J.M., Zeijst B.A.M., Spaan W.J.M., Horzinek M.C., editors. Plenum; New York: 1984. pp. 365–380. [Google Scholar]
- 57.Pedersen N.C., Boyle J.F., Floyd K. Infection studies in kittens utilizing feline infectious peritonitis virus propagated in cell culture. Am. J. Vet. Res. 1981;42:363–367. [PubMed] [Google Scholar]
- 58.Perlman S., Jacobsen G., Moore S. Regional localization of virus in the central nervous system of mice persistently infected with murine coronavirus JHM. Virology. 1988;166:328–338. doi: 10.1016/0042-6822(88)90503-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Poland A.M., Vennema H., Foley J.E., Pedersen N.C. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J. Clin. Microbiol. 1996;34:3180–3184. doi: 10.1128/jcm.34.12.3180-3184.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Rigby M.A., Holmes E.C., Pistello M., Mackay A., Brown A.J., Neil J.C. Evolution of structural proteins of feline immunodeficiency virus: Molecular epidemiology and evidence of selection for change. J. Gen. Virol. 1993;74:425–436. doi: 10.1099/0022-1317-74-3-425. [DOI] [PubMed] [Google Scholar]
- 61.Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
- 62.Sawicki S.G., Lu J., Holmes K.V. Persistent infection of cultured cells with mouse hepatitis virus (MHV) results from the epigenetic expression of the MHV receptor. J. Virol. 1995;69:5535–5543. doi: 10.1128/jvi.69.9.5535-5543.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Siddell S.G. In: The Coronaviridae. Siddell S.G., editor. Plenum; New York: 1995. pp. 1–10. [Google Scholar]
- 64.Sodora D.L., Shpaer E.G., Kitchell B.E., Dow S.W., Hoover E.A., Mullins J.I. Identification of three feline immunodeficiency virus (FIV) env gene subtypes and comparison of the FIV and human immunodeficiency virus type I evolutionary patterns. J. Virol. 1994;68:2230–2238. doi: 10.1128/jvi.68.4.2230-2238.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Sorensen O., Percy D., Dales S. In vivo and in vitro models of demyelinating disease. III. JHM virus infection of rats. Arch. Neurol. 1980;37:478–484. doi: 10.1001/archneur.1980.00500570026003. [DOI] [PubMed] [Google Scholar]
- 66.Stoddart C.A., Scott F.W. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence. J. Virol. 1989;63:436–440. doi: 10.1128/jvi.63.1.436-440.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Stohlman S.A., Sakaguchi A.Y., Weiner L.P. Characterization of the cold-sensitive hepatitis virus mutants rescued from latently infected cells by fusion. Virology. 1979;98:448–455. doi: 10.1016/0042-6822(79)90567-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Strunnikova N., Ray S.C., Livingston R.A., Rubalcaba E., Viscidi R.P. Convergent evolution within the V3 loop domain of human immunodeficiency virus type I in association with disease progression. J. Virol. 1995;69:7548–7558. doi: 10.1128/jvi.69.12.7548-7558.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Tammer R., Evensen O., Lutz H., Reinacher M. Immunohistological demonstration of feline infectious peritonitis virus antigen in paraffin-embedded tissues using feline ascites or murine monoclonal antibodies. Vet. Immunol. Immunopathol. 1995;49:177–182. doi: 10.1016/0165-2427(95)05459-J. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Tresnan D.B., Levis R., Holmes K.V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 1996;70:8669–8674. doi: 10.1128/jvi.70.12.8669-8674.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.van Doorn L.J., Capriles I., Maertens G., DeLeys R., Murray K., Kos T., Schellekens H., Quint W. Sequence evolution of the hypervariable region in the putative envelope region E2/NS1 of hepatitis C virus is correlated with specific humoral immune responses. J. Virol. 1995;69:773–778. doi: 10.1128/jvi.69.2.773-778.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Vennema H., De Groot R.J., Harbour D.A., Dalderup M.J.M., Gruffydd Jones T.J., Horzinek M.C., Spaan W.J.M. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J. Virol. 1990;64:1407–1409. doi: 10.1128/jvi.64.3.1407-1409.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Vennema H., Poland A., Floyd Hawkins K., Pedersen N.C. A comparison of the genomes of FECVs and FIPVs and what they tell us about the relationships between feline coronaviruses and their evolution. Feline Pract. 1995;23:40–44. [Google Scholar]
- 74.Vennema H., Rossen J.W., Wesseling J., Horzinek M.C., Rottier P.J. Genomic organization and expression of the 3′ end of the canine and feline enteric coronaviruses. Virology. 1992;191:134–140. doi: 10.1016/0042-6822(92)90174-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Wesseling J.G., Vennema H., Godeke G., Horzinek M.C., Rottier P.J.M. Nucleotide sequence and expression of the spike (S) gene of canine coronavirus and comparison with the S protein of feline and porcine coronavirus. J. Gen. Virol. 1994;75:1789–1794. doi: 10.1099/0022-1317-75-7-1789. [DOI] [PubMed] [Google Scholar]