Abstract
A human coronavirus, strain OC 43, was propagated in suckling mouse brain and purified 5000-fold with, a 90% yield. Purity of the virus was confirmed by electrophoretic, ultracentrifugal, and electron microscopic procedures. Immunodiffusion and immunoelectrophoresis tests revealed one precipitin line with normal mouse brain, three with purified virus, and four with crude virus when tested against anti-pure virus or anti-crude virus animal serums. The association of a host cell antigen with the virion was confirmed by standard HI and CF tests. Polyacrylamide gel electrophoresis of solubilized purified virus revealed a minimum of six polypeptides with apparent molecular weights of 191,000 (No. 1), 104,000 (No. 2), 60,000 (No. 3), 47,000 (No. 4), 30,000 (No. 5), and 15,000 daltons (No. 6). A seventh band was occasionally found in the 165,000-dalton region of the gels. Four polypeptides contained carbohydrate and one contained lipid. Polypeptide No. 5 comprised 26% of the total viral protein and glycopolypeptide No. 3 comprised 23%. Three other components accounted for most of the remaining protein: polypeptide No. 4 (16%), glycopolypeptide No. 6 (14%), and glycolipopolypeptide No. 1 (13%). Glycopolypeptide No. 2 was 8% of the total protein. Bromelin digestion of the viral projections (spikes) removed glycopolypeptides No. 2 and No. 6. Association of the remaining polypeptides with structural components of the virion is only tentatively postulated. The buoyant density in potassium tartrate of the bromelin-treated virus was 1.15 g/cm3 and of the intact OC 43 virion was 1.18 g/cm3. By analytical ultracentrifugation the corrected sedimentation coefficient (s020w) of the OC 43 virion was determined to be 390 ± 16 S, and the apparent molecular weight (MWa) was calculated to be 112 ± 5 × 106 daltons.
References
- Almeida J.D., Tyrrell D.A.J. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J. Gen. Virol. 1967;1:175–178. doi: 10.1099/0022-1317-1-2-175. [DOI] [PubMed] [Google Scholar]
- Almeida J.D., Waterson A.P. Some implications of a morphologically oriented classification of viruses. Arch. Gesamte Virusforsch. 1970;32:66–72. doi: 10.1007/BF01241521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apostolov K., Flewett T.H., Kendal A.P. Morphology of influenza A, B, C, and infectious bronchitis virus (IBV) virions and their replication. In: Barry R.D., Mahy B.W., editors. The Biology of Large RNA Viruses. Academic Press; London: 1970. pp. 3–26. [Google Scholar]
- Becker W.B., McIntosh K., Dees J.H., Chanock R.M. Morphogenesis of avian infectious bronchitis virus and a related human virus (strain 229E) J. Virol. 1967;1:1019–1027. doi: 10.1128/jvi.1.5.1019-1027.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berry D.M., Almeida J.D. The morphological and biological effects of various antisera on avian infectious bronchitis virus. J. Gen. Virol. 1968;3:97–102. doi: 10.1099/0022-1317-3-1-97. [DOI] [PubMed] [Google Scholar]
- Bradburne A.F. Antigenic relationships amongst coronaviruses. Arch. Gesamte Virus-forsch. 1970;31:352–364. doi: 10.1007/BF01253769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradburne A.F., Tyrrell D.A.J. Coronaviruses of man. Progr. Med. Virol. 1971;13:373–403. [Google Scholar]
- Burness A.T.H., Clothier F.W. Particle weight and other biophysical properties of encephalomyocarditis virus. J. Gen. Virol. 1970;6:381–393. doi: 10.1099/0022-1317-6-3-381. [DOI] [PubMed] [Google Scholar]
- Casey H.L. Standardized Diagnostic Complement Fixation Method and Adaptation to Micro Test. 1965. Part II. Adaptation of LBCF method to microtechnique. (U.S.P.H.S. Monograph No. 74). [PubMed] [Google Scholar]
- Chrambach A., Reisfeld R.A., Wyckoff M., Zaccari J. A procedure for rapid and sensitive staining of protein fractionated by polyacrylamide gel electrophoresis. Anal. Biochem. 1967;20:150–154. doi: 10.1016/0003-2697(67)90272-2. [DOI] [PubMed] [Google Scholar]
- Clarke J.T. Simplified “disc” (polyacrylamide gel) electrophoresis. Ann. N.Y. Acad. Sci. 1964;121:428–436. doi: 10.1111/j.1749-6632.1964.tb14214.x. [DOI] [PubMed] [Google Scholar]
- Compans R.W., Klenk H.D., Caliguiri L.A., Choppin P.W. Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology. 1970;42:880–889. doi: 10.1016/0042-6822(70)90337-5. [DOI] [PubMed] [Google Scholar]
- Crowle A.J. Academic Press; New York: 1961. Immunodiffusion; p. 272. [Google Scholar]; Crowle A.J. Academic Press; New York: 1961. Immunodiffusion; p. 306. [Google Scholar]
- Estola T. Coronaviruses, a new group of animal RNA viruses. Avian Dis. 1970;14:330–336. [PubMed] [Google Scholar]
- Hamre D., Kindig D.A., Mann J. Growth and intracellular development of a new respiratory virus. J. Virol. 1967;1:810–816. doi: 10.1128/jvi.1.4.810-816.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hierholzer J.C., Suggs M.T., Hall E.C. Standardized viral hemagglutination and hemagglutination inhibition tests. II. Description and statistical evaluation. Appl. Microbiol. 1969;18:824–833. doi: 10.1128/am.18.5.824-833.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holowczak J.A., Joklik W.K. Studies on the structural proteins of vaccinia virus. I. Structural proteins of virions and cores. Virology. 1967;33:717–725. doi: 10.1016/0042-6822(67)90072-4. [DOI] [PubMed] [Google Scholar]
- Kaye H.S., Hierholzer J.C., Dowdle W.R. Vol. 135. 1970. Purification and further characterization of an “IBV-like” virus (coronavirus) pp. 457–463. (Proc. Soc. Exp. Biol. Med.). [DOI] [PubMed] [Google Scholar]
- Laver W.G., Kilbourne E.D. Identification in a recombinant influenza virus of structural proteins derived from both parents. Virology. 1966;30:493–501. doi: 10.1016/0042-6822(66)90125-5. [DOI] [PubMed] [Google Scholar]
- Laver W.G., Valentine R.C. Morphology of the isolated hemagglutinin and neuraminidase subunits of influenza virus. Virology. 1969;38:105–119. doi: 10.1016/0042-6822(69)90132-9. [DOI] [PubMed] [Google Scholar]
- Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- Maizel J.V., Summers D.F., Scharff M.D. SDS-acrylamide gel electrophoresis and its application to the proteins of poliovirus-and adenovirus-infected human cells. J. Cell. Physiol. 1970;76:273–288. doi: 10.1002/jcp.1040760307. [DOI] [PubMed] [Google Scholar]
- McIntosh K., Bruckova M., Kapikian A.Z., Chanock R.M., Turner H. Studies on new virus isolates recovered in tracheal organ culture. Ann. N. Y, Acad. Sci. 1970;174:983–989. doi: 10.1111/j.1749-6632.1970.tb45618.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McIntosh K., Kapikian A.Z., Hardison K.A., Hartley J.W., Chanock R.M. Antigenic relationships among the coronaviruses of man and between human and animal coronaviruses. J. Immunol. 1969;102:1109–1118. [PubMed] [Google Scholar]
- Oshiro L.S., Schieble J.H., Lennette E.H. Electron microscopic studies of coronavirus. J. Gen. Virol. 1971;12:161–168. doi: 10.1099/0022-1317-12-2-161. [DOI] [PubMed] [Google Scholar]
- Shapiro A.L., Vinuela E., Maizel J.V., Jr. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-poly acrylamide gels. Biochem. Biophys. Res. Commun. 1967;28:815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
- Svedberg T., Pedersen K.O. Oxford Univ. Press; London: 1940. The Ultracentrifuge. [Google Scholar]
- Tevethia S.S., Cunningham C.H. Antigenic characterization of infectious bronchitis virus. J. Immunol. 1968;100:793–798. [PubMed] [Google Scholar]
- Uppal P.K., Chu H.P. An electronmicroscope study of the trachea of the fowl infected with avian infectious bronchitis virus. J. Med. Microbiol. 1970;3:643–647. doi: 10.1099/00222615-3-4-643. [DOI] [PubMed] [Google Scholar]
- Uriel J. The characterization reactions of the protein constituents following electrophoresis or immunoelectrophoresis in agar. In: Grabar P., Burtin P., editors. Immunoelectrophoretic Analysis. Elsevier; Amsterdam: 1964. pp. 35–36. [Google Scholar]