Abstract
The pol genes of retroviruses are translated as gag-pol fusion proteins by ribosomal frameshifting within the gag-pol overlap region. During the ribosomal frameshift event, the gag open reading frame is shifted -1 nt to allow in-phase reading of the pol open reading frame. A consensus frameshift signal sequence of GGGAAAC within the gag-pol overlap region of feline immunodeficiency virus (FIV) has been identified followed by a sequence that has the potential for a pseudoknot tertiary structure. Using recombinant baculoviruses in which the frameshift occurs efficiently, the consensus sequence has been shown to be the site of the frameshift event. A mutation creating a termination codon just downstream of the putative frameshift signal sequence but upstream of the potential pseudoknot structure made a shorter gag product, but did not affect the efficiency of frameshifting. A mutation creating a termination codon just upstream of the putative frameshift signal made a shorter product and essentially abrogated frameshifting. Mutations in the first stem or the second stem in the potential pseudoknot structure severely reduced the frameshifting efficiency. Mutations which altered the length between the frameshift signal and the pseudoknot structure (the so-called spacer region) also reduced the frameshift efficiency. The insertion of a palindromic sequence, which could form a hairpin structure just upstream of the frameshift signal sequence, also affected the frameshifting. These results support the view that the ribosomal frameshift event in the FIV gag-pol region involves the identified signal sequence and appears to require the precisely positioned downstream sequence and indicated pseudoknot structure for efficient frameshifting.
References
- Brierley I., Boursnell M., Birns M., Bilmoria B., Block V., Brown T., Inglis S.C. An efficient ribosomal frameshifting signal in the polymerase-encoding region of the Coronavirus IBV. EMBO J. 1987;6:3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brierley I., Digard P., Inglis S.C. Characterization of an efficient ribosomal frameshifting signal: Requirement for an RNA pseudoknot. Cell. 1989;57:537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felgner P.L., Gadek T.R., Holm M., Chan H.W., Wenz M., Northrop J.P., Ringold G.M., Danielsen M. Vol. 84. 1987. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure; pp. 7413–7417. (Proc. Natl. Acad. Sci., USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felsenstein K.M., Goff S.P. Expression of the gag-pol fusion protein of Moloney murine leukemia virus without gag protein does not induce virion formation or proteolytic processing. J. Virol. 1988;62:2179–2182. doi: 10.1128/jvi.62.6.2179-2182.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gheysen D., Jacobs E., Foresta F., Thiriart C., Francotte M., Trines D., De Wilds M. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell. 1989;59:103–112. doi: 10.1016/0092-8674(89)90873-8. [DOI] [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 1983;166:557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Hizi A., Henderson L.E., Copeland T.D., Sowden R.C., Hixson C.V., Oroszlan S. Characterization of mouse mammary tumor virus gag-pol gene products and the ribosomal frameshift by protein sequencing. Proc. Natl. Acad. Sci. USA. 1987;84:7041–7046. doi: 10.1073/pnas.84.20.7041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacks T., Varmus H.E. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985;230:1237–1242. doi: 10.1126/science.2416054. [DOI] [PubMed] [Google Scholar]
- Jacks T., Townsley K., Varmus H.E., Majors I. Vol. 84. 1987. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polypeptides; pp. 4298–4302. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacks T., Power M.D., Masiarz F.R., Luciw P.A., Barr P.J., Varmus H.E. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature. 1988;331:280–283. doi: 10.1038/331280a0. [DOI] [PubMed] [Google Scholar]
- Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988;55:447–458. doi: 10.1016/0092-8674(88)90031-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacks T. Translational suppression in gene expression in retroviruses and retrotransposons. In: Swanstrom R., Vogt P.K., editors. Vol. 157. Springer-Verlag; New York/Berlin: 1990. pp. 93–124. (Current Topics in Microbiology and Immunology). [DOI] [PubMed] [Google Scholar]
- Kunkel T.A. Vol. 82. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection; pp. 488–492. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuura Y., Posses R.D., Overton H.A., Bishop D.H.L. Baculovirus expression vectors: The requirements for high level expression of proteins including glycoproteins. J. Gen. Virol. 1987;68:1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
- Morikawa S., Booth T.F., Bishop D.H.L. Analyses of the requirements for the synthesis of virus-like particles by feline immunodeficiency virus gag using baculovirus vectors. Virology. 1991 doi: 10.1016/0042-6822(91)90141-w. in press. [DOI] [PubMed] [Google Scholar]
- Moors R., Dixon M., Smith R., Peters G., Dickson C. Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: Two frameshift suppression events are required for translation of gag and pol. J. Virol. 1987;61:480–490. doi: 10.1128/jvi.61.2.480-490.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Opperman L., Bishop J.M., Varmus H.E., Levintow L. A joint product of the genes gag and pol of avian sarcoma virus: A possible precursor of reverse transcriptase. Cell. 1977;12:993–1005. doi: 10.1016/0092-8674(77)90164-7. [DOI] [PubMed] [Google Scholar]
- Olmstead R.A., Hirsch V.M., Purcell R.H., Johnson P.R. Nucleotide sequence analysis of feline immunodeficiency virus: Genome organization and relationship to other lentiviruses. Proc. Natl. Acad. Sci. USA. 1989;86:8088–8092. doi: 10.1073/pnas.86.20.8088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overton H.A., Fujii Y., Price I.R., Jones I.M. The protease and gag gene products of the human immunodeficiency virus: Authentic cleavage and post-translational modification in an insect cell expression system. Virology. 1989;170:508–511. doi: 10.1016/0042-6822(89)90357-7. [DOI] [PubMed] [Google Scholar]
- Overton H.A., McMillan D.J., Gridley S.J., Grenner J., Redshaw S., Mills J.S. Effect of two novel inhibitors of the human immunodeficiency virus protease on the maturation of the HIV gag and gag-pol polyproteins. Virology. 1990;179:508–511. doi: 10.1016/0042-6822(90)90326-m. [DOI] [PubMed] [Google Scholar]
- Power M.D., Marx P.A., Bryant M.L., Gardner M.D., Barr P.I., Luciw P.A. Nucleotide sequence of SRV-1, a type D simian acquired immune deficiency syndrome retrovirus. Science. 1986;231:1567–1572. doi: 10.1126/science.3006247. [DOI] [PubMed] [Google Scholar]
- Pedersen N.C., Wiho H., Brown M.L., Yamamoto J.K. Isolation of T-lympotropic virus from domestic cats with an immunodeficiency-like syndrome. Science. 1987;235:790–793. doi: 10.1126/science.3643650. [DOI] [PubMed] [Google Scholar]
- Phillips T.R., Talbot R.L., Lamont C., Muir S., Lovelace K., Elder J.H. Comparison of two host range variants of feline immunodeficiency virus. J. Virol. 1990;64:4605–4613. doi: 10.1128/jvi.64.10.4605-4613.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonigo P., Alison M., Staskus K., Klatzmann D., Cole S., Danos O., Retzel E., Tiollais P., Haase A., Wain-Hobson S. Nucleotide sequence of the visna lentivirus: Relationship with the AIDS virus. Cell. 1985;42:369–382. doi: 10.1016/s0092-8674(85)80132-x. [DOI] [PubMed] [Google Scholar]
- Sonigo P., Barker C., Hunter E., Wain-Hobson S. Nucleotide sequence of Mason-Pfizer monkey virus: An immunosuppressive D-type retrovirus. Cell. 1986;45:375–385. doi: 10.1016/0092-8674(86)90323-5. [DOI] [PubMed] [Google Scholar]
- Talbot R.L., Sparger E.E., Lovelace K.M., Fitch W.M., Pedersen N.C., Luciw P.A., Elder J.H. Vol. 86. 1989. Nucleotide sequence and genomic organization of feline immunodeficienty virus; pp. 5743–5747. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson R.C., Karim A.M. Vol. 79. 1982. The accuracy of protein biosynthesis is limited by its speed: High fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[rS] pp. 4922–4926. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Vol. 76. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications; pp. 4350–4354. (Proc. Natl. Acad. Sci. USA). [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieira J., Messing J. Production of single-stranded plasmid DNA. In: Wu R., Grossman L., editors. Vol. 153. Academic Press; San Diego: 1987. pp. 3–11. (Methods in Enzymology). [DOI] [PubMed] [Google Scholar]
- Wilson W., Braddock M., Adams S.E., Rathjen P.D., Kingsman M., Kingsman A.J. HIV expression strategies: Ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems. Cell. 1988;55:1159–1169. doi: 10.1016/0092-8674(88)90260-7. [DOI] [PubMed] [Google Scholar]
- Yamamoto J.K., Hansen H., Ho E.W., Morishita T.Y., Okuda T., Sawa T., Nakamura R.N., Pedersen N.C. Epidemiologic and clinical aspects of feline immunodeficiency virus infection in cats from the continental United States and Canada and possible mode of transmission. J. Am. Vet. Med. Assoc. 1988;194:213–220. [PubMed] [Google Scholar]
- Yamamoto J.K., Sparger E., Ho E.W., Anderson P.R., O'Cornor T., Mandell C.P., Lowenstine L., Munn R., Pedersen N.C. Pathogenesis of experimentally induced feline immunodeficiency virus infection in cats. Am. J. Vet. Res. 1988;49:1246–1258. [PubMed] [Google Scholar]