Abstract
Proteins of the exocytotic (secretory) pathway are initially targeted to the endoplasmic reticulum (ER) and then translocated across and/or inserted into the membrane of the ER. During their anterograde transport with the bulk of the membrane flow along the exocytotic pathway, some proteins are selectively retained in various intracellular compartments, while others are sorted to different branches of the pathway. The signals or structural motifs that are involved in these selective targeting processes are being revealed and investigations into the mechanistic nature of these processes are actively underway.
References
- 1. Rothman, J. and Orci, L. (1992). Molecular dissection of the secretory pathway. Nature 355, 409–415. [DOI] [PubMed] [Google Scholar]
- 2. Mellman, I. , and Simons, K. (1992). The Golgi complex: in vitro veritas. Cell 68, 829–840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3. Klausner, R. D. , Donaldson, J. G. , and Lippincott‐schwartz, J. (1992). Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116, 1071–1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Farquhar, M. G. and Palade, G. (1981). The Golgi apparatus (complex)‐1954‐1981‐from artifact to center stage. J. Cell Biol. 91, 77s–106s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Singer, J. (1990). The structure and insertion of integral proteins in membranes. Annu. Rev. Cell Biol. 6, 247–296. [DOI] [PubMed] [Google Scholar]
- 6. High, S. , and Dobberstein, B. (1992). Mechanisms that determine the transmembrane disposition of proteins. Curr. Op Cell Biol. 4, 581–586. [DOI] [PubMed] [Google Scholar]
- 7. Kornfeld, R. , and Kornfeld, S. (1985). Assembly of asparagine‐linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664. [DOI] [PubMed] [Google Scholar]
- 8. Klausner, R. D. , Lippincott‐Schwartz, J. and Bonifacino, J. S. (1990). The T cell antigen receptor: insights into organelle biology. Annu. Rev. Cell Biol. 6, 403–431. [DOI] [PubMed] [Google Scholar]
- 9. Griffiths, G. , and Simons, K. (1986). The trans‐Golgi network: sorting at the exit site of the Golgi complex. Science 234, 438–443. [DOI] [PubMed] [Google Scholar]
- 10. Saraste, J. and Svensson, K. (1991). Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100, 415–430. [DOI] [PubMed] [Google Scholar]
- 11. Hsu, V. W. , Yuan, L. C. , Nuchtern, J. G. , Lippincott‐Schwartz, J. , Hammerling, G. J. , and Klausner, R. D. (1991). A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature 352, 441–444. [DOI] [PubMed] [Google Scholar]
- 12. Pelham, H. R. B. (1991). Recycling of proteins between the endoplasmic reticulum and the Golgi complex. Curr. Op. Cell Biol. 3, 585–591. [DOI] [PubMed] [Google Scholar]
- 13. Tang, B. L. , Wong, S. H. , Qi, X. L. , Low, S. H. , and Hong, W. (1993). Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol. 120, 325–338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Mostov, K. , Apodaca, G. , Aroeti, B. , and Okamoto, C. (1992). Plasma membrane protein sorting in polarized epithelial cells. J. Cell Biol. 116, 577–583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Simons, K. and Wandinger‐Ness, A. (1990). Polarized sorting in epithelia. Cell 62, 207–210. [DOI] [PubMed] [Google Scholar]
- 16. Rodriguez‐Boulan, E. , and Nelson, W. J. (1989). Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718–725. [DOI] [PubMed] [Google Scholar]
- 17. Rothman, J. E. (1987). Protein sorting by selective retention in the endoplasmic reticulum and the Golgi stack. Cell 50, 521–522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Jackson, M. R. , Nilsson, T. and Peterson, P. A. (1990). Identification of a concensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9, 3153–3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Shin, J. , Dunbrack, Jr., R. L. , Lee, S. , and Strominger, J. L. (1991). Signals for retention of transmembrane proteins in the endoplasmic reticulum studied with CD4 truncation mutants. Proc. Natl Acad. Sci. USA 88, 1918–1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Heesen, S. , Rauhut, R. , Aebersold, R. , Abelson, J. , Aebi, M. , and Clark, M. W. (1991). An essential 45 kDa yeast transmembrane protein reacts with anti‐nuclear pore antibodies: purification of protein, immunolocalization and cloning of the gene. Eur. J. Cell Biol. 56, 8–18. [PubMed] [Google Scholar]
- 21. Gorlich, D. , Hartmann, E. , Prehn, S. , and Rapoport, T. A. (1992). A protein of the endoplasmic reticulum involved early in polypeptide translocation. Nature 357, 47–52. [DOI] [PubMed] [Google Scholar]
- 22. Mallabiabarrena, A. , Fresno, M. , and Alarcon, B. (1992). An endoplasmic reticulum retention signal in the CD3 chain of the T‐cell receptor. Nature 357, 593–596. [DOI] [PubMed] [Google Scholar]
- 23. Pelham, H. R. B. (1990). The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem. Sci. 15, 483–486. [DOI] [PubMed] [Google Scholar]
- 24. Semenza, J. C. , Hardwick, K. G. , Dean, N. , and Pelham, H. R. B. (1990). ERD2, a yeast gene required for the receptor‐mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357. [DOI] [PubMed] [Google Scholar]
- 25. Lewis, M. J. , Sweet, D. J. and Pelham, H. R. B. (1992). The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell. 61, 1359–1363. [DOI] [PubMed] [Google Scholar]
- 26. Lewis, M. J. and Pelham, H. R. B. (1990). A human homologue of the yeast HDEL receptor. Nature 348, 162–163. [DOI] [PubMed] [Google Scholar]
- 27. Hsu, V. W. , Shah, N. , and Klausner, R. D. (1992). A brefeldin A‐like phenotype is induced by the overexpression of a human ERD‐2‐like protein, ELP‐1. Cell 69, 625–635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Lewis, M. J. , and Pelham, H. R. B. (1992). Ligand‐induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68, 353–364. [DOI] [PubMed] [Google Scholar]
- 29. Hauri, H‐P. , and Schweizer, A. (1992). The endoplasmic reticulum‐Golgi intermediate compartment. Curr. Op. Cell Biol. 4, 600–608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Sweet, D. J. , and Pelham, H. R. B. (1992). The Saccharomyces cerevisiae SEC20 gene encodes a membrane glycoprotein which is sorted by the HDEL retrieval system. EMBO J. 11, 423–432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31. Hardwick, K. G. , Boothroyd, J. C. , Rudner, A. D. , and Pelham, H. R. B. (1992). Genes that allow yeast cells to grow in the absence of the HDEL receptor. EMBO J. 11, 4187–4195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32. Tang, B. L. , Wong, S. H. , Low, S. H. and Hong, W. (1992). Retention of a type II surface membrane protein in the endoplasmic reticulum by the KDEL sequence. J. Biol. Chem. 267, 7072–7076. [PubMed] [Google Scholar]
- 33. Tartakoff, A. M. (1986). Temperature and energy dependence of secretory protein transport in the exocrine pancreas. EMBO J. 5, 1477–1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34. Orci, L. , Ravazzola, M. , Meda, P. , Holcomb, C. , Moore, H.‐P. , Hicke, L. , and Schekman, R. (1991). Mammalian Sec23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc. Natl Acad. Sci. USA 88, 8611–8615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35. Bonnati, S. , Migliaccio, G. and Simons, K. (1989). Palmitylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum. J. Biol. Chem. 264, 12590–12595. [PubMed] [Google Scholar]
- 36. Vale, R. D. (1992). Microtubule motors: Many new models off the assembly line. Trends Biochem. Sci. 17, 300–304. [DOI] [PubMed] [Google Scholar]
- 37. Lotti, L. V. , Torrisi, M‐R. , Pascale, M. C. , and Bonatti, S. (1992). Immunocytochemical analysis of the transfer of vesicular stomatitis virus G glycoprotein from the intermediate compartment to the Golgi complex. J. Cell Biol. 118, 43–50. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38. Paulson, J. C. , and Colley, K. J. (1989). Glycosyltransferases: structure, localization, and control of cell type‐specific glycosylation. J. Biol. Chem. 264, 17615–17618. [PubMed] [Google Scholar]
- 39. Wong, S. H. , Low, S. H. , and Hong, W. (1992). The 17‐residue transmembrane domain of beta;‐galactoside α2,6‐sialytransferase is sufficient for Golgi retention. J. Cell Biol. 117, 245–258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40. Munro, S. (1991). Sequences within and adjacent to the transmembrane segment of α2,6‐sialytransferase specify Golgi retention. EMBO J. 10, 3577–3588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41. Colley, K. J. , Lee, E. U. , and Paulson, J. C. (1992). The signal anchor and stem regions of beta;‐galactoside α2,6‐sialytransferase may each act to localize the enzyme to the Golgi apparatus. J. Biol. Chem. 267, 7784–7793. [PubMed] [Google Scholar]
- 42. Nilson, T. , Lucoq, J. M. , Mackay, D. and Warren, G. (1991). The membrane spanning domain of beta;1,4‐galactosyltransferase specifies trans Golgi localization. EMBO J. 10, 3567–3575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43. Teasdale, R. D. , D'Agostaro, G. , and Gleeson, P. A. (1992). The signal for Golgi retention of bovine beta;1,4‐galactosyltransferase is in the transmembrane domain. J. Biol. Chem. 267, 4084–4096. [PubMed] [Google Scholar]
- 44. Aoki, D. , Lee, N. , Yamaguchi, N. , Dubois, C. , and Fukuda, M. N. (1992). Golgi retention of a trans‐Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane‐anchoring domain. Proc. Natl Acad. Sci. 89, 4319–4323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Russo, R. N. , Shaper, N. L. , Taatjes, D. J. , and Shaper, J. H. (1992). β1,4‐galactosyltransferase: a short NH2‐terminal fragment that includes the cytoplasmic and transmembrane domain is sufficient for Golgi retention. J. Biol. Chem. 267, 9241–9247. [PubMed] [Google Scholar]
- 46. Tang, B. L. , Wong, S. H. , Low, S. H. and Hong, W. (1992). The transmembrane domain of N‐acetylglucosaminyltransferase I contains a Golgi retention signal. J. Biol. Chem. 267, 10122–10126. [PubMed] [Google Scholar]
- 47. Swift, A. M. , and Machamer, C. E. (1991). A Golgi retention signal in a membrane‐spanning domain of coronavirus E1 protein. J. Cell Biol. 115, 19–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48. Armstrong, J. and Patel, S. (1991). The Golgi sorting domain of coronavirus E1 protein. J. Cell Sci. 98, 567–575. [DOI] [PubMed] [Google Scholar]
- 49. Tang, B. L. , Wong, S. H. , Qi, X. , Subramaniam, V. N. , and Hong, W. (1992). Golgi‐localized beta;‐galactoside α2,6‐sialytransferase in transfected CHO cells is redistributed to the endoplasmic reticulum by brefeldin A. Eur. J. Cell Biol. 59, 228–231. [PubMed] [Google Scholar]
- 50. Machamer, C. E. , Mentone, S. A. , Rose, J. K. , and Farquhar, M. G. (1990). The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc. Natl Acad. Sci. 87, 6944–6948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51. Luzio, J. P. , Brake, B. , Banting, G. , Howell, K. E. , Braghetta, P. and Stanley, K. K. (1990). Identification, sequencing and expression of an integral membrane protein of the trans‐Golgi network (TGN38). Biochem. J. 270, 97–102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52. Dahms, N. M. , Lobel, P. , and Kornfeld, S. (1989). Mannose‐6‐phosphate receptors and lysosomal targeting. J. Biol. Chem. 264, 12115–12118. [PubMed] [Google Scholar]
- 53. Pearse, B. M. F. , and Robinson, M. S. (1990). Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6, 151–171. [DOI] [PubMed] [Google Scholar]
- 54. Johnson, K. F. , and Kornfeld, S. (1992). The cytoplasmic tail of the mannose‐6‐phosphat/insulin‐like growth factor‐II receptor has two signal for lysosomal enzyme sorting in the Golgi. J. Cell Biol. 119, 249–257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55. Fukuda, M. (1991). Lysosomal membrane glycoproteins: structure, biosynthesis, and intracellular targeting. J. Biol. Chem. 266, 21327–21330. [PubMed] [Google Scholar]
- 56. Letourneur, F. , and Klausner, R. D. (1992). A novel di‐leucine motif and a tyrosine‐based motif independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69, 1143–1157. [DOI] [PubMed] [Google Scholar]
- 57. Braun, M. , Waheed, A. , and von Figura, K. (1989). Lysosomal acid phosphatase is transported to lysosomes via the cell surface. EMBO J. 8, 3633–3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58. Nabi, I. R. , Le Bivic, A. , Fambrough, D. , and Rodriguez‐Boulan, E. (1991). An endogenous MDCK lysosomal membrane glycoprotein is targeted basolaterally before delivery to lysosomes. J. Cell Biol. 115, 1573–1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59. Harter, C. , and Mellman, I. (1992). Transport of the lysosomal membrane glycoprotein lgp120 (lgp‐A) to lysosomes does not require appearance on the plasma membrane. J. Cell Biol. 117, 311–325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60. Bakke, O. , and Dobberstein, B. (1990). MHC class II‐associated invariant chain contains a sorting signal for endosomal compartments. Cell 63, 707–716. [DOI] [PubMed] [Google Scholar]
- 61. Lotteau, V. , Teyton, L. , Peleraux, A. , Nilsson, T. , Karlsson, L. , Schmid, S. L. , Quaranta, V. , and Peterson, P. A. Intracellular transport of class II MHC molecules directed by invariant chain. Nature 348, 600–605. [DOI] [PubMed] [Google Scholar]
- 62. Low, S. H. , Wong, S. H. , Tang, B. L. , Tan, P. , Subramaniam, V. N. and Hong, W. (1991). Inhibition by brefeldin A of protein secretion from the apical cell surface of Madin‐Darby canine kidney cells. J. Biol. Chem. 266, 17729–17732. [PubMed] [Google Scholar]
- 63. Low, S. H. , Tang, B. L. , Wong, S. H. and Hong, W. (1992). Selective inhibition of protein targeting to the apical domain of MDCK cells by brefeldin A. J. Cell Biol. 118, 51–62 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64. Hunziker, W. , Whitney, J. A. , and Mellman, I. (1991). Selective inhibition of transcytosis by brefeldin A. Cell 67, 617–628. [DOI] [PubMed] [Google Scholar]
- 65. Lisanti, M. P. , and Rodriguez‐Boulan, E. (1990). Glycophospholipid membrane anchoring provides clues to the mechanism of protein sorting in polarized epithelial cell. Trand Biochem Sci. 15, 113–118. [DOI] [PubMed] [Google Scholar]
- 66. Brown, D. A. , and Rose, J. K. (1992). Sorting of GPI‐linked proteins to glycolipid‐enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544. [DOI] [PubMed] [Google Scholar]
- 67. Casanova, J. E. , Apodaca, G. , and Mostov, K. E. (1991). An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 66, 65–75. [DOI] [PubMed] [Google Scholar]
- 68. Yokode, M. , Pathak, R. K. , Hammer, R. E. , Brown, M. S. , Goldstein, J. L. , and Anderson, G. W. (1992). Cytoplasmic sequence required for basolateral targeting of LDL receptor in livers of transgenic mice. J. Cell Biol. 117, 39–46. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69. Hunziker, W. , Harter, C. , Matter, K. , and Mellman, I. (1991). Basolateral sorting in MDCK cells requires a distinct cytoplasmic domain determinant. Cell 66, 907–920. [DOI] [PubMed] [Google Scholar]
- 70. Brewer, C. B. , and Roth, M. G. (1991). A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J. Cell Biol. 114, 413–421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71. Le Bivic, A. , Sambuy, Y. , Patzak, A. , Patil, N. , Chao, M. , and Rodriguez‐Boulan, E. (1991). An Internal deletion in the cytoplasmic tail reverses the apical localization of human NGF receptor in transfected MDCK cells. J. Cell Biol. 115, 607–618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72. Trowbridge, I. S. (1991). Endocytosis and signals for internalization. Curr. Op. Cell Biol. 3, 634–641. [DOI] [PubMed] [Google Scholar]
- 73. Collawn, J. F. , Stangel, M. , Kuhn, L. A. , Esekogwu, V. , Jing, S. , Trowbridge, I. S. and Tainer, J. A. (1990). Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell. 63, 1061–1072. [DOI] [PubMed] [Google Scholar]
- 74. Wandinger‐Ness, A. , Bennett, M. K. , Antony, C. , and Simons, K. (1990). Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J. Cell Biol. 111, 987–1000. [DOI] [PMC free article] [PubMed] [Google Scholar]