Skip to main content
Brain Pathology logoLink to Brain Pathology
. 2006 Apr 5;13(1):104–110. doi: 10.1111/j.1750-3639.2003.tb00011.x

Assessing the Efficacy of Highly Active Antiretroviral Therapy in the Brain

Apsara Kandanearatchi 1, Brenda Williams 1, Ian Paul Everall 1,
PMCID: PMC8095802  PMID: 12580550

Abstract

The devastating effects of HIV infection have been documented for the last 2 decades. Since the 1980s over 60 million people have been infected and at present 40 million people globally are living with HIV (72). HIV infects the central nervous system (CNS) early in the disease process. Indeed, numerous studies document the presence of HIV within the cerebrospinal fluid (CSF) (14,15). Direct infection of the brain by HIV ultimately results in HIV associated dementia (HAD), which (prior to the advent of antiretroviral therapy) affected 20% of patients (48, 55). An increasing number of drugs have been developed to treat this infection and delay the development of AIDS. Current treatment is aimed at inhibiting viral replication, and thus, lowering the viral load. However a subsequent increase in viral load can occur as patients become resistant to drug therapy. In the era of HAART, the incidence of HAD has been reduced, whereas the prevalence rate is increasing as people with HIV survive longer. However, in a study of initial AIDS defining illnesses, the proportion with HIV related dementia did not decline following introduction of HAART (19). In a separate study, no decrease was found in the incidence of dementia per se, although there was a decrease in the incidence of all AIDS‐defining illnesses during this time period (50). It is evident from most studies that since the introduction of HAART, its effect on HAD is not entirely clear, although the majority of findings indicate that it is beneficial. Here we will outline the issues relevant to preventing HAD by HAART.

Full Text

The Full Text of this article is available as a PDF (41.3 KB).

References

  • 1. Arendt G, Giesen HJ, Hefter H, Theisen A (2001) Therapeutic effects of nucleoside analogues on psychomotor slowing in HIV infection. AIDS 15:493–500. [DOI] [PubMed] [Google Scholar]
  • 2. Asare E, Dunn G, Glass J, McArthur J, Luthert P, Lantos P, Everall I (1996) Neuronal pattern correlates with the severity of HIV‐associated dementia complex: usefulness of spatial pattern analysis in clinico‐pathological studies. Am J Pathol 148:31–38. [PMC free article] [PubMed] [Google Scholar]
  • 3. Bacheler LT, Anton E, Kudish P, Baker D, Bunville J, Krakowski K, Bolling L, Aujay M, Wang X, Ellis D, Becker M, Lasut A, George H, Spalding D, Hollis G, Ambremski K (2000) Human immunodeficiency virus type 1 mutations selected in patients failing efavirenz combination therapy. Antimicrobial Agents and Chemotherapy 44:2475–2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Bagasra O, Lavi E, Bobroski L, Khalili K, Pestaner JP, Pomerantz C (1996) Cellular reservoirs of HIV‐1 in the central nervous system of infected individuals: identification by combination of in situ PCR and immunohistochemistry. AIDS 10:573–585. [DOI] [PubMed] [Google Scholar]
  • 5. Bell JE, Brettle RP, Chiswick A, Simmonds P (1998) HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS effect of neocortical involvement. Brain 121:2043–2052. [DOI] [PubMed] [Google Scholar]
  • 6. Bouwman FH, Skolasky RLHESD, Selnes OA, Glass JD, Nance‐Sproson TE, Royal W, Dal Pan GJ, McArthur JC (1998) Variable progression of HIV associated dementia. Neurology 50:1814–1820. [DOI] [PubMed] [Google Scholar]
  • 7. Brady K, Aldrich J, Broston R, MacGregor RR (1998) Stavudine entry into cerebrospinal fluid of HIV‐infected subjects after single and multiple doses. 12th World AIDS Conference, Poster session 2355.
  • 8. Brew BJ, Bhalla RB, Fliesher, Paul M, Khan A, Schwartz MK, Price (1989) Cerebrospinal fluid B2 microglobulin n patients infected with human immunodeficiency virus. Neurology 39:830–834. [DOI] [PubMed] [Google Scholar]
  • 9. Brew BJ, Bhalla RB, Paul M, Gallardo H, McArthur JC, Schwartz MK, Price RW (1990) Cerebrospinal fluid neopterin in human immunodeficiency virus type 1 infection. Ann Neurol 28:556–560. [DOI] [PubMed] [Google Scholar]
  • 10. Budka H, Wiley CA, Kleihues P, Artigas J, Asbury AK, Cho E‐S, Cornblath MC, Dal Canto MC, DeGirolami U, Dickson D, Epstein LG et al (1991) HIV‐related disease of the nervous system: A glossary and proposal for neuropathology‐based terminology. Brain Pathol 1:143–150. [DOI] [PubMed] [Google Scholar]
  • 11. Burger DM, Kraaijeveld CL, Meenhorst PL, Mulder JW, Koks CHW, Bult A, Beijnen JH (1993) Penetration of zidovudine into the cerebrospinal fluid of patients infected with HIV. AIDS 7:1581–1587. [DOI] [PubMed] [Google Scholar]
  • 12. Cameron DW, Heath‐Chiozzi M, Danner S, Cohen C, Kravicik S, Maurath C (1998) Randomised placebo‐controlled trail of ritonavir in advanced HIV‐1 disease. Lancet 351:543–549. [DOI] [PubMed] [Google Scholar]
  • 13. Cashion MF, Banks WA, Bost KL, Kastin AJ (1999) Transmission routes of HIV‐1 gp120 from blood to lymphoid tissues. Brain Research 822:26–33. [DOI] [PubMed] [Google Scholar]
  • 14. Cheng‐Meyer C, Levy J (1988) Distinct biological and serological properties of HIV isolates from the brain. Ann Neurol 23:S58–S61. [DOI] [PubMed] [Google Scholar]
  • 15. Cheng‐Meyer C, Levy J (1990) Human immunodeficiency virus infection of the CNS: characterisation of the neurotropic strains. Current Topics Microbial Immunology 160:145–156. [DOI] [PubMed] [Google Scholar]
  • 16. Clifford DB (1998) Antiretroiral therapies for HIV infection implications for treatment of neurologic manifestations: An overview In: Neurology of AIDS. Chapter 24, p. 353–363. [Google Scholar]
  • 17. Cohen RA, Boland R, Paul R, Tashima KT, Schoenbaum EE, Celentano DD, Schuman P, Smith DK, Carpenter C (2001) Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV infected women. AIDS 15:341–345. [DOI] [PubMed] [Google Scholar]
  • 18. Deeks SG, Wrin TW, Lieger T, Hoh R, Hayden M, Barbour JD, Hellman NS, Petropoulos J, McCune JM, Hellerstein MK, Grant R (2001) Virological and immunological consequences of discontinuing combination antiretroviraldrug therapy in HIV‐1 infected patients with detectable viremia. N Engl J Med 344:472–480. [DOI] [PubMed] [Google Scholar]
  • 19. Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999) Changes in AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13:1249–1253. [DOI] [PubMed] [Google Scholar]
  • 20. Ellis RJ, Hsia K, Spector SA, Nelson JA, Heaton RK, Wallace MR, Abramson I, Atkinson JH, Grant I, McCutchan JA and the HNRC Group (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. Ann Neurol 42:679–688. [DOI] [PubMed] [Google Scholar]
  • 21. Egger M (1998) Opportunistic infections in the era of HAART. XII International Conference in AIDS, Geneva (abstract 76).
  • 22. Egger M, Hirschel B, Francioli P (1997) Impact of new antiretroviral combination therapies in HIV‐infected patients in Switzerland: prospective multicentre study. British Med J 315:1194–1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Enzensberger W, von Giesen HJ (1999) Antiretroviral therapy (ART) from a neurological point of view. German Neuro‐AIDS study Group (DNAA). Eur J Med Res 4:456–462. [PubMed] [Google Scholar]
  • 24. Everall IP, Luthert PJ, Lantos PL (1991) Neuronal loss in the frontal cortex in HIV infection. Lancet 337:1119–1121. [DOI] [PubMed] [Google Scholar]
  • 25. Everall IP, Luthert P, Lantos P (1993) A review of neuronal damage in human immunodeficiency virus infection: its assessment, possible mechanisms and relationship to dementia. J Neuropathol Exp Neurol 52:561–566. [DOI] [PubMed] [Google Scholar]
  • 26. Fox E, Bungay PM, Bacher J, McCully CL, Dedrick RL, Balis FM (2002) Zidovudine concentratin in brain extracellular fluid measured by microdialysis: steady‐state and transient results in rhesus monkey. J Pharm and Exp Therap 301:1003–1011. [DOI] [PubMed] [Google Scholar]
  • 27. Foudraine NA, Hoetelmans RMW, Lange JMA, de Wolf F, van Benthem BHB, Maas JJ, Keet IPM, Portegies P (1998) Cerebrospinal fluid HIV‐1 RNA and drug concentrations after treatment with lamivudine plus zidovudine and stavudine. Lancet 351:1547–1551. [DOI] [PubMed] [Google Scholar]
  • 28. Gelman BB, Guinto FC (1992) Morphometry, histopathol‐ogy and tomography of cerebral atrophy in the acquired immunodeficiency syndrome. Ann Neurol 32:31–40. [DOI] [PubMed] [Google Scholar]
  • 29. Gibb JE, Thomas SA (2002) The distribution of the anti‐HIV drug, 2′3′‐dideoxycytidine (ddC), across the blood‐brain and blood‐cerebrospinal fluid barriers and the influence of organic anion transport inhibitors. J Neurochem 80:392–404. [DOI] [PubMed] [Google Scholar]
  • 30. Gisslen M, Norkrans G, Svennerholm B, Hagberg L (1997) The effect on cerebrospinal fluid HIV RNA levels after initiation of zidovudine or didanosine. J Infect Dis 175:434–437. [DOI] [PubMed] [Google Scholar]
  • 31. Glass JD, Fedor H, Wesseling SL, McArthur JC (1995) Immunocytochemical quantitation of the human immunodeficiency virus in the brain: Correlations with dementia. Ann Neurol 38:755–762. [DOI] [PubMed] [Google Scholar]
  • 32. Gray F, Belec L, Keohane C, de Truchis P, Clair B, Durigon M, Sobel A, Gherardi R (1994) Zidovudine therapy and HIV encephalitis: a 10‐year neuropathological survey. AIDS 8: 489–493. [DOI] [PubMed] [Google Scholar]
  • 33. Groothuis DR, Levy RM (1997) The entry of antiviral and antiretroviral drugs into the central nervous system. J Neurovirol 3:387–400. [DOI] [PubMed] [Google Scholar]
  • 34. Gulick RM, Mellrs J, Havlir D, Eron J, Gonzalez C, McMahon D, Richman D, Valentine F, Jona L, Meibohm A, Emini E, Chodakewitz J (1997) Treatment with indinavir, zidovudine and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N Engl J Med 337:734–739. [DOI] [PubMed] [Google Scholar]
  • 35. Haworth SJ, Christofalo B, Anderson RD, Dunkle LM (1998) A single dose‐study to assess the penetration of stavudine into human cerebrospinal fluid in adults. J AIDS Res Hum Retrovirol 17:235–238. [DOI] [PubMed] [Google Scholar]
  • 36. Hervey PS, Perry CM (2000) Abacavir: a review of its clinical potential in patients with HIV infection. Drugs 60:447–479. [DOI] [PubMed] [Google Scholar]
  • 37. Husstedt I, Frohne L, Bockenholt S, Frese A, Rahmann A, Heese C, Reichelt D, Evers S (2002) Impact of highly active antiretroviral therapy on cognitive processing in HIV infection: Cross‐sectional and longitudinal studies of event‐related potentials. AIDS Res Hum Retrovir 18:485–490. [DOI] [PubMed] [Google Scholar]
  • 38. Jernigan TL, Archibald S, Hesselink JR, Atkinson JH, Velin RA, McCutchan JA, Chandler J, Grant I (1993) MRI morphometric analysis of cerebral volume loss in HIV infection. Arch Neurol 50:250–255. [DOI] [PubMed] [Google Scholar]
  • 39. Joly V, Yeni P (1999) Non nucleoside reverse transcriptase inhibitors. AIDS Rev 1:37–44. [PubMed] [Google Scholar]
  • 40. Kandanearatchi A, Zuckerman M, Smith M, Vyakarnam Everall IP (2002) Granulocyte‐macrophage colony‐stimulating factor enhances viral load in human brain tissue: amelioration with stavudine. AIDS 16:413–420. [DOI] [PubMed] [Google Scholar]
  • 41. Kandanearatchi A, Trillo‐Pazos G, Vyakarnam A, Everall IP (2000) Zidovudine and abacavir prevents neuronal loss in a HIV infected human brain aggregate system. 7th European Conference on Experimental AIDS Research, Genoa, Italy.
  • 42. Kearney B, Price R, Sheiner et al (1999) Estimation of nevi‐rapine exposure within the cerebrospinal fluid using CSF: plasma area under the curve ratios. 6th Conference on Retroviruses and Opportunistic Infections, Chicago, USA, Abstract 406.
  • 43. Latendre SL, Ellis R, McCutchan J (2000) Antiretroviral therapy (ART) induces changes in chemokines that correlate with improvements in cognitive function and HIV RNA. 7th Conference on Retroviruses and Opportunistic Infections.
  • 44. Limoges J, Persidsky Y, Poluektova L, Rasmussen J, Ratanasuwan W, Zelivyanskaya M, McClermon DR, Lanier ER, Gendelman HE (2000) Evaluation of antiretroviral drug efficacy for HIV‐1 encephalitis in SCID mice. Neurology 54:379–389. [DOI] [PubMed] [Google Scholar]
  • 45. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan A, Nelson JA, Atkinson JH, Grant I and Group HNRC (1997) Dendritic injury is a pathological substrate for HIV related cognitive disorders. Annals Neurology 42:963–972. [DOI] [PubMed] [Google Scholar]
  • 46. Masliah E, Ge N, Achim C, Hansen LA and Wiley CA (1992) Selective vulnerability in HIV encephalitis. J Neu-ropathol Exp Neurol 51:585–593. [DOI] [PubMed] [Google Scholar]
  • 47. McArthur JC, McClernon DR, Cronin MF, Nance‐Spro‐son TE, Saah AJ, Claire M St, Lanier ER (1997) Relationship between human immunodeficiency virus associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42:689–698. [DOI] [PubMed] [Google Scholar]
  • 48. McArthur JC, Hoover DR, Bacellar H, Miller EN, Cohen BA, Becker JT, Graham NMH, McArthur JH, Selnes OA, Jacobson LP, Visscher BR, Concha M, Saah A (1993) Dementia in AIDS patients: incidence and risk factors. Neurology 43:2245–2252. [DOI] [PubMed] [Google Scholar]
  • 49. McDowell JA, Chittick GE, Ravitch JR, Polk RE, Kerker‐ing TM, Stein DS (1999) Pharmacokinetics of [14C] Abacavir, a human immunodeficiency virus type‐1 reverse transcriptase inhibitor, administered in a single oral dose to HIV‐1 infected adults: a mass balance study. Antimicrob Agents Chemother 43:2855–2861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50. Mocroft A, Sabin CA, Youle M, Madge S, Tyrer M, Derereux H, Dayton J, Dykhoff A, Lipman MC, Phillip AN, Johnson MA (1999) Changes in AIDS‐defining illnesses in a London Clinic, 1987–1998. J AIDS 21:401–407. [PubMed] [Google Scholar]
  • 51. Navia BA, Cho ES, Petito CK, Price RW (1986) The AIDS dementia complex. Ann Neurol 19:525–535. [DOI] [PubMed] [Google Scholar]
  • 52. Nouvo GJ, Gallery F, MacConnell P, Braun A (1994) In situ detection of polymerase chain reaction ‐amplified HIV‐1 nucleic acids and tumour necrosis factor a RNA n the central nervous system. Am J Pathol 144:659–666. [PMC free article] [PubMed] [Google Scholar]
  • 53. Pani A, Marongiu ME (2000) Anti‐HIV integrase drugs: How far from the shelf Curr Pharmac Des 6:569–584. [DOI] [PubMed] [Google Scholar]
  • 54. Portegies P, de Gans J, Lange JM, Derix MM, Speelman H, Bakker M, Danner SA, Goadsmit G (1989) Declining incidence of AIDS dementia complex after introduction of zidovudine treatment. British Med J 299:819–821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55. Price RW (1996) Neurological complications of HIV infection. Lancet 348:445–452. [DOI] [PubMed] [Google Scholar]
  • 56. Rolinski B, Bogner JR, Wintergerst U, Goebel FD (1997) Absorption and elimination kinetics of zidovudine in the cerebrospinal fluid in HIV‐1 infected patients. J AIDS Hum Retrovirol 15:192–197. [DOI] [PubMed] [Google Scholar]
  • 57. Rosenblum LL, Patton G, Grigg AR, Frater AJ, Cain D, Erl‐wein O, Hill CL, Clarke JR, McClure MO (2001) Differential susceptibility of retroviruses to nucleoside analogues. Antivir Chem Chemother 12:91–97. [DOI] [PubMed] [Google Scholar]
  • 58. Rusconi S, Catamancio S, Sheridan F, Parker D (2000) A genotypic analysis of patients receiving zidovudine with either lamivudine, didanosine or zalcitabine dual therapy using the LiPA point mutation assay to detect genotypic variation at codons 41, 69, 70, 74, 184 and 215. J Clin Virol 19:135–142. [DOI] [PubMed] [Google Scholar]
  • 59. Sacktor NC, Lyles RH, Skolasky RL, Kleeberger C, Selnes OA, Miller EN, Becker JT, Cohen B, McArthur JC (1999) Combination antiretroviral therapy improves psy‐chomotor speed performance in HIV‐seropositive homosexual men. Multicenter AIDS Cohort Study (MACS). Neurology 52:1640–1647. [DOI] [PubMed] [Google Scholar]
  • 60. Shafer RW, Vuitton DA (1999) Highly active antiretroviral therapy (HAART) for the treatment of infection with human immunodeficiency virus type 1. Biomed & Phar-macother 53:73–86. [DOI] [PubMed] [Google Scholar]
  • 61. Sidtis JJ, Gatsonis C, Price R, Singer EJ, Collier AC, Richman DD, Hirsch MS, Schaerf FW, Fischl MA, Keiburtz K et al (1993) Zidovudine treatment of AIDS dementia complex: results of a placebo controlled trial. Ann Neurol 33:343–349. [DOI] [PubMed] [Google Scholar]
  • 62. Sommadossi JP (1998) Pharmacological considerations in antiretroviral therapy. Antivir Ther 3 Suppl 5:9–12. [PubMed] [Google Scholar]
  • 63. Stahl L, Martin C, Svensson JO, Sonnerborg (1997) Indi‐navir in cerebrospinal fluidof HIV‐1 infected patients. Lancet 350:1823. [DOI] [PubMed] [Google Scholar]
  • 64. Suarez S, Baril L, Stankoff B, Khellaf M, Dubios B, Lubet‐zki C, Bricaire F, Hauw JJ (2001) Outcome of patients with HIV‐1 related cognitive impairment on highly active antiretroviral therapy. AIDS 15:195–200. [DOI] [PubMed] [Google Scholar]
  • 65. Highly Active Antiretroviral Therapy in the Brain—Kandanearatchi at el. 109.
  • 65. Tarrago‐Litvak L, Andreola ML, Fournier M, Nevinsky GA, Parissi V, de Soultrait VR, Litvak S (2002) Inhibitors of HIV‐1 reverse transcriptase and integrase: classic and emerging therapeutical approaches. Curr Pharm Des 8:595–614. [DOI] [PubMed] [Google Scholar]
  • 66. Tashima KT (1998) Cerebrospinal fluid levels of antiretroviral medications. JAMA 280:879–880. [DOI] [PubMed] [Google Scholar]
  • 67. Tashima KT, Caliendo AM, Ahmad M, Gormley JM, Fiske WD, Brennan JM, Flanigan TP (1999) Cerebrospinal fluid human immunodeficiency virus type 1 (HIV‐1) suppression and efavirenz drug concentrations in HIV‐1 infected patients receiving combination therapy. J Infect Dis 180:862–864. [DOI] [PubMed] [Google Scholar]
  • 68. Thomas SA, Segal MB (2001) Transport characteristics of the anti‐human immunodeficiency virus ucleoside analog abacavir, into brain and cerebrospinal fluid. J Pharmacol Exp Therap 298:947–953. [PubMed] [Google Scholar]
  • 69. Thomas SA, Segal MB (1998) The transport of the anti‐HIV drug, 2′,3′‐didehydro‐3′‐deoxythymidine (D4T), across the blood brain and blood‐cerebrospinal fluid barriers. British J Pharmacol 125:49–54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 70. Thomas SA, Segal MB (1997) The passage of azido‐deoxythymidine into and within the cenral nervous system: does it follow the parent compound, thymidine J Pharmacol Exp Therap 281:1211–1218. [PubMed] [Google Scholar]
  • 71. Tozzi V, Balestra P, Galgani S (1999) Positive and sustained effects of highly active antiretroviral therapy on HIV‐1 associated neurocognitive impairment. AIDS 13:1889–1897. [DOI] [PubMed] [Google Scholar]
  • 72. UNAIDS‐WHO (2001) AIDS epidemic update. Joint United Nations Programme on HIV/AIDS, 1–22.
  • 73. Vago L, Castagna A, Lazzarin A, Traattoni G, Cinque P and Costanzi G (1993) Reduced requency of HIV‐induced brain lesions in AIDS treated with zidovudine. J AIDS 6:42–45. [PubMed] [Google Scholar]
  • 74. Wiley C, Achim C, Christopherson C, Kidane Y, Kwok S, Masliah E, Mellors J, Radhakrishnan L, Wang G, Soon‐tornniyomkij V (1999) HIV mediates a productive infection of the brain. AIDS 13:2055–2059. [DOI] [PubMed] [Google Scholar]

Articles from Brain Pathology are provided here courtesy of Wiley

RESOURCES