Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jul 1;261(1):155–166. doi: 10.1042/bj2610155

Primary structure of a novel 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS)-binding membrane protein highly expressed in Torpedo californica electroplax.

T J Jentsch 1, A M Garcia 1, H F Lodish 1
PMCID: PMC1138795  PMID: 2775201

Abstract

Polyclonal rabbit antibodies were raised against 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid (SITS), an inhibitor of a variety of anion transport proteins. These antibodies specifically recognize SITS-reacted erythrocyte band 3 in immunoprecipitations and Western blots. In Western blots of SITS-reacted membrane proteins derived from vesicles of the electric organ of Torpedo californica (known to express a SITS-sensitive Cl- channel) the antibodies recognized two major species of approximately 93 kDa and approximately 105 kDa. The approximately 93 kDa protein was identified as the alpha-subunit of the Na,K-ATPase. The approximately 105 kDa protein (designated sp105) is a glycoprotein which binds to wheat-germ agglutinin and concanavalin A and is present as a disulphide-linked homodimer under non-reducing conditions. A partial amino acid sequence and a polyclonal antibody were used to clone the corresponding cDNA. sp105 is encoded in electroplax by two abundant mRNAs of approximately 6 and approximately 6.8 kb. A hybridizing mRNA of approximately 5 kb was over 200-fold and over 500-fold less abundant in brain and heart respectively. Sequence analysis of the cDNA predicted a novel protein of 697 amino acids containing eight potential N-linked glycosylation sites. Analysis of hydrophobicity indicated the presence of at least one, and possibly three, putative membrane-spanning domains. When expressed from the Sp6 message in Xenopus laevis oocytes, the protein was inserted into membranes, glycosylated and processed to form a dimer. However, no increase in 36Cl uptake or in membrane conductance could be detected. We found no effect of hybrid depleting the specific message on expression of the Torpedo electroplax Cl- channel in oocytes. Thus we conclude that this novel electroplax membrane protein is probably not a functional part of the chloride channel.

Full text

PDF
158

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper S. L., Kopito R. R., Libresco S. M., Lodish H. F. Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J Biol Chem. 1988 Nov 15;263(32):17092–17099. [PubMed] [Google Scholar]
  2. Ballivet M., Patrick J., Lee J., Heinemann S. Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4466–4470. doi: 10.1073/pnas.79.14.4466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Na-H exchange. J Gen Physiol. 1983 Jan;81(1):29–52. doi: 10.1085/jgp.81.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boron W. F., McCormick W. C., Roos A. pH regulation in barnacle muscle fibers: dependence on extracellular sodium and bicarbonate. Am J Physiol. 1981 Jan;240(1):C80–C89. doi: 10.1152/ajpcell.1981.240.1.C80. [DOI] [PubMed] [Google Scholar]
  5. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation. J Membr Biol. 1974;15(3):207–226. doi: 10.1007/BF01870088. [DOI] [PubMed] [Google Scholar]
  6. Cabantchik Z. I., Rothstein A. Membrane proteins related to anion permeability of human red blood cells. II. Effects of proteolytic enzymes on disulfonic stilbene sites of surface proteins. J Membr Biol. 1974;15(3):227–248. doi: 10.1007/BF01870089. [DOI] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Claudio T., Ballivet M., Patrick J., Heinemann S. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1111–1115. doi: 10.1073/pnas.80.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Claudio T. Stable expression of transfected Torpedo acetylcholine receptor alpha subunits in mouse fibroblast L cells. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5967–5971. doi: 10.1073/pnas.84.16.5967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  11. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  12. Flinta C., Persson B., Jörnvall H., von Heijne G. Sequence determinants of cytosolic N-terminal protein processing. Eur J Biochem. 1986 Jan 2;154(1):193–196. doi: 10.1111/j.1432-1033.1986.tb09378.x. [DOI] [PubMed] [Google Scholar]
  13. Frail D. E., Mudd J., Shah V., Carr C., Cohen J. B., Merlie J. P. cDNAs for the postsynaptic 43-kDa protein of Torpedo electric organ encode two proteins with different carboxyl termini. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6302–6306. doi: 10.1073/pnas.84.17.6302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Froehner S. C., Murnane A. A., Tobler M., Peng H. B., Sealock R. A postsynaptic Mr 58,000 (58K) protein concentrated at acetylcholine receptor-rich sites in Torpedo electroplaques and skeletal muscle. J Cell Biol. 1987 Jun;104(6):1633–1646. doi: 10.1083/jcb.104.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hallett M., Schneider A. S., Carbone E. Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts. J Membr Biol. 1972;10(1):31–44. doi: 10.1007/BF01867846. [DOI] [PubMed] [Google Scholar]
  16. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  17. Inoue I. Modification of K conductance of the squid axon membrane by SITS. J Gen Physiol. 1986 Oct;88(4):507–520. doi: 10.1085/jgp.88.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jentsch T. J., Keller S. K., Koch M., Wiederholt M. Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells. J Membr Biol. 1984;81(3):189–204. doi: 10.1007/BF01868713. [DOI] [PubMed] [Google Scholar]
  19. Jessen F., Sjøholm C., Hoffmann E. K. Identification of the anion exchange protein of Ehrlich cells: a kinetic analysis of the inhibitory effects of 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS) and labeling of membrane proteins with 3H-DIDS. J Membr Biol. 1986;92(3):195–205. doi: 10.1007/BF01869388. [DOI] [PubMed] [Google Scholar]
  20. Kanemasa T., Banba K., Kasai M. Voltage-gated anion channel of the electric organ of Narke japonica incorporated into planar bilayers. J Biochem. 1987 Apr;101(4):1025–1032. doi: 10.1093/oxfordjournals.jbchem.a121944. [DOI] [PubMed] [Google Scholar]
  21. Kawakami K., Noguchi S., Noda M., Takahashi H., Ohta T., Kawamura M., Nojima H., Nagano K., Hirose T., Inayama S. Primary structure of the alpha-subunit of Torpedo californica (Na+ + K+)ATPase deduced from cDNA sequence. Nature. 1985 Aug 22;316(6030):733–736. doi: 10.1038/316733a0. [DOI] [PubMed] [Google Scholar]
  22. Kemp B. E., Bylund D. B., Huang T. S., Krebs E. G. Substrate specificity of the cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3448–3452. doi: 10.1073/pnas.72.9.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kondo Y., Yoshitomi K., Imai M. Effects of anion transport inhibitors and ion substitution on Cl- transport in TAL of Henle's loop. Am J Physiol. 1987 Dec;253(6 Pt 2):F1206–F1215. doi: 10.1152/ajprenal.1987.253.6.F1206. [DOI] [PubMed] [Google Scholar]
  24. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  25. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  26. Labarca P., Rice J. A., Fredkin D. R., Montal M. Kinetic analysis of channel gating. Application to the cholinergic receptor channel and the chloride channel from Torpedo californica. Biophys J. 1985 Apr;47(4):469–478. doi: 10.1016/S0006-3495(85)83939-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Lathe R. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations. J Mol Biol. 1985 May 5;183(1):1–12. doi: 10.1016/0022-2836(85)90276-1. [DOI] [PubMed] [Google Scholar]
  29. Lepke S., Fasold H., Pring M., Passow H. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). J Membr Biol. 1976 Oct 20;29(1-2):147–177. doi: 10.1007/BF01868957. [DOI] [PubMed] [Google Scholar]
  30. Lipman D. J., Pearson W. R. Rapid and sensitive protein similarity searches. Science. 1985 Mar 22;227(4693):1435–1441. doi: 10.1126/science.2983426. [DOI] [PubMed] [Google Scholar]
  31. Lübbert H., Hoffman B. J., Snutch T. P., van Dyke T., Levine A. J., Hartig P. R., Lester H. A., Davidson N. cDNA cloning of a serotonin 5-HT1C receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4332–4336. doi: 10.1073/pnas.84.12.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  33. McCrea P. D., Popot J. L., Engelman D. M. Transmembrane topography of the nicotinic acetylcholine receptor delta subunit. EMBO J. 1987 Dec 1;6(12):3619–3626. doi: 10.1002/j.1460-2075.1987.tb02693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Miller C., White M. M. A voltage-dependent chloride conductance channel from Torpedo electroplax membrane. Ann N Y Acad Sci. 1980;341:534–551. doi: 10.1111/j.1749-6632.1980.tb47197.x. [DOI] [PubMed] [Google Scholar]
  35. Miller C., White M. M. Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A. 1984 May;81(9):2772–2775. doi: 10.1073/pnas.81.9.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature. 1982 Oct 28;299(5886):793–797. doi: 10.1038/299793a0. [DOI] [PubMed] [Google Scholar]
  37. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Furutani Y., Hirose T., Takashima H., Inayama S., Miyata T. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature. 1983 Apr 7;302(5908):528–532. doi: 10.1038/302528a0. [DOI] [PubMed] [Google Scholar]
  38. Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hirose T., Asai M., Takashima H., Inayama S., Miyata T. Primary structures of beta- and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature. 1983 Jan 20;301(5897):251–255. doi: 10.1038/301251a0. [DOI] [PubMed] [Google Scholar]
  39. Noguchi S., Noda M., Takahashi H., Kawakami K., Ohta T., Nagano K., Hirose T., Inayama S., Kawamura M., Numa S. Primary structure of the beta-subunit of Torpedo californica (Na+ + K+)-ATPase deduced from the cDNA sequence. FEBS Lett. 1986 Feb 17;196(2):315–320. doi: 10.1016/0014-5793(86)80270-8. [DOI] [PubMed] [Google Scholar]
  40. Omori K., Takemura S., Omori K., Mega T., Tashiro Y. Isolation of the alpha and beta subunits of canine (Na+,K+)ATPase by using SDS-PAGE and lectin-Sepharose. J Biochem. 1983 Dec;94(6):1857–1866. doi: 10.1093/oxfordjournals.jbchem.a134539. [DOI] [PubMed] [Google Scholar]
  41. Pearson R. B., Woodgett J. R., Cohen P., Kemp B. E. Substrate specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem. 1985 Nov 25;260(27):14471–14476. [PubMed] [Google Scholar]
  42. Pimplikar S. W., Reithmeier R. A. Affinity chromatography of Band 3, the anion transport protein of erythrocyte membranes. J Biol Chem. 1986 Jul 25;261(21):9770–9778. [PubMed] [Google Scholar]
  43. Pimplikar S. W., Reithmeier R. A. Identification, purification, and characterization of a stilbenedisulfonate binding glycoprotein from canine kidney brush border membranes. A candidate for a renal anion exchanger. J Biol Chem. 1988 Mar 25;263(9):4485–4493. [PubMed] [Google Scholar]
  44. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  45. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schild L., Giebisch G., Green R. Chloride transport in the proximal renal tubule. Annu Rev Physiol. 1988;50:97–110. doi: 10.1146/annurev.ph.50.030188.000525. [DOI] [PubMed] [Google Scholar]
  47. Schumacher M., Camp S., Maulet Y., Newton M., MacPhee-Quigley K., Taylor S. S., Friedmann T., Taylor P. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. 1986 Jan 30-Feb 5Nature. 319(6052):407–409. doi: 10.1038/319407a0. [DOI] [PubMed] [Google Scholar]
  48. Suarez-Isla B. A., Hucho F. Acetylcholine receptor: SH group reactivity as indicator of conformational changes and functional states. FEBS Lett. 1977 Mar 15;75(1):65–69. doi: 10.1016/0014-5793(77)80054-9. [DOI] [PubMed] [Google Scholar]
  49. Sumikawa K., Parker I., Amano T., Miledi R. Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes. EMBO J. 1984 Oct;3(10):2291–2294. doi: 10.1002/j.1460-2075.1984.tb02128.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sweadner K. J. Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin. J Biol Chem. 1979 Jul 10;254(13):6060–6067. [PubMed] [Google Scholar]
  51. Taguchi T., Kasai M. Identification of an anion channel protein from electric organ of Narke japonica. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1088–1094. doi: 10.1016/0006-291x(80)90063-7. [DOI] [PubMed] [Google Scholar]
  52. Thomas R. C. Ionic mechanism of the H+ pump in a snail neurone. Nature. 1976 Jul 1;262(5563):54–55. doi: 10.1038/262054a0. [DOI] [PubMed] [Google Scholar]
  53. Tsunasawa S., Stewart J. W., Sherman F. Amino-terminal processing of mutant forms of yeast iso-1-cytochrome c. The specificities of methionine aminopeptidase and acetyltransferase. J Biol Chem. 1985 May 10;260(9):5382–5391. [PubMed] [Google Scholar]
  54. White M. M., Miller C. A voltage-gated anion channel from the electric organ of Torpedo californica. J Biol Chem. 1979 Oct 25;254(20):10161–10166. [PubMed] [Google Scholar]
  55. White M. M., Miller C. Chloride permeability of membrane vesicles isolated from Torpedo californica electroplax. Biophys J. 1981 Aug;35(2):455–462. doi: 10.1016/S0006-3495(81)84801-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wood W. I., Gitschier J., Lasky L. A., Lawn R. M. Base composition-independent hybridization in tetramethylammonium chloride: a method for oligonucleotide screening of highly complex gene libraries. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1585–1588. doi: 10.1073/pnas.82.6.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Woodruff M. L., Theriot J., Burden S. J. 300-kD subsynaptic protein copurifies with acetylcholine receptor-rich membranes and is concentrated at neuromuscular synapses. J Cell Biol. 1987 Apr;104(4):939–946. doi: 10.1083/jcb.104.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ziegler K., Frimmer M., Fasold H. Further characterization of membrane proteins involved in the transport of organic anions in hepatocytes. Comparison of two different affinity labels: 4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid and brominated taurodehydrocholic acid. Biochim Biophys Acta. 1984 Jan 11;769(1):117–129. doi: 10.1016/0005-2736(84)90015-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES