Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Mar;137(3):489–495. doi: 10.1042/bj1370489

The molecular weight and properties of a neutral metallo-endopeptidase from rabbit kidney brush border

M A Kerr 1, A J Kenny 1
PMCID: PMC1166148  PMID: 4214106

Abstract

1. Some properties of a brush-border neutral endopeptidase purified from rabbit kidney were investigated. The peptidase was assayed by its ability to hydrolyse [125I]iodoinsulin B chain. 2. The enzyme was found to be homogeneous when studied in the analytical ultracentrifuge and stained as a single glycoprotein band after electrophoresis in polyacrylamide gels. 3. The molecular weight was estimated by gel filtration in columns of Sephadex G-200, by polyacrylamide-gel electrophoresis in the presence of 2-mercapto-ethanol and sodium dodecyl sulphate and by sedimentation equilibrium in the ultra-centrifuge. The estimates fell within the range 87000–96000. The mean from two sedimentation equilibrium experiments was 93000, though this estimate may be slightly inflated because of the carbohydrate component of the enzyme. No evidence of dissociation into smaller subunits was obtained in the presence of thiol, sodium dodecyl sulphate or guanidine hydrochloride. 4. The endopeptidase was maximally active at pH6.0, although in phosphate buffer, which was strongly inhibitory, an optimum above pH8 was observed. 5. The enzyme was not affected by di-isopropyl phosphofluoridate nor by several thiol reagents. It was, however, strongly inhibited by many thiols and by EDTA and other chelating agents. 6. Although activity of the EDTA-treated enzyme could be partially restored by various bivalent metal ions, the optimum concentration for its reactivation by Zn2+ was lower than that for other ions. This metal was detected in the enzyme preparation by atomic absorption spectrophotometry in an amount equivalent to approximately one atom/mol. 7. The enzyme is the only endopeptidase shown to be located in the kidney brush border and is the first mammalian example of a neutral Zn2+- activated endopeptidase to be characterized.

Full text

PDF
489

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baratti J., Maroux S., Louvard D., Desnuelle P. On porcine enterokinase. Further purification and some molecular properties. Biochim Biophys Acta. 1973 Jul 5;315(1):147–161. doi: 10.1016/0005-2744(73)90138-1. [DOI] [PubMed] [Google Scholar]
  3. Butterworth P. J., Moss D. W. Action of neuraminidase on human kidney alkaline phosphatase. Nature. 1966 Feb 19;209(5025):805–806. doi: 10.1038/209805a0. [DOI] [PubMed] [Google Scholar]
  4. Fillenz M. Hypothesis for a neuronal mechanism involved in memory. Nature. 1972 Jul 7;238(5358):41–43. doi: 10.1038/238041a0. [DOI] [PubMed] [Google Scholar]
  5. George S. G., Kenny J. Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochem J. 1973 May;134(1):43–57. doi: 10.1042/bj1340043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glossmann H., Neville D. M., Jr Glycoproteins of cell surfaces. A comparative study of three different cell surfaces of the rat. J Biol Chem. 1971 Oct 25;246(20):6339–6346. [PubMed] [Google Scholar]
  7. Groniowski J., Biczyskowa W., Walski M. Electron microscope studies on the surface coat of the nephron. J Cell Biol. 1969 Mar;40(3):585–601. doi: 10.1083/jcb.40.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HARTLEY B. S. Proteolytic enzymes. Annu Rev Biochem. 1960;29:45–72. doi: 10.1146/annurev.bi.29.070160.000401. [DOI] [PubMed] [Google Scholar]
  9. Hade E. P., Tanford C. Isopiestic compositions as a measure of preferential interactions of macromolecules in two-component solvents. Application to proteins in concentrated aqueous cesium chloride and guanidine hydrochloride. J Am Chem Soc. 1967 Sep 13;89(19):5034–5040. doi: 10.1021/ja00995a036. [DOI] [PubMed] [Google Scholar]
  10. Ito S. The enteric surface coat on cat intestinal microvilli. J Cell Biol. 1965 Dec;27(3):475–491. doi: 10.1083/jcb.27.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawahara K., Tanford C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J Biol Chem. 1966 Jul 10;241(13):3228–3232. [PubMed] [Google Scholar]
  12. Kerr M. A., Kenny A. J. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J. 1974 Mar;137(3):477–488. doi: 10.1042/bj1370477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MATHIES J. C. Preparation and properties of highly purified alkaline phosphatase from swine kidneys. J Biol Chem. 1958 Nov;233(5):1121–1127. [PubMed] [Google Scholar]
  14. Morell A. G., Van den Hamer C. J., Scheinberg I. H. Physical and chemical studies on ceruloplasmin. VI. Preparation of human ceruloplasmin crystals. J Biol Chem. 1969 Jul 10;244(13):3494–3496. [PubMed] [Google Scholar]
  15. ORLOWSKI M., MEISTER A. ISOLATION OF GAMMA-GLUTAMYL TRANSPEPTIDASE FROM HOG KIDNEY. J Biol Chem. 1965 Jan;240:338–347. [PubMed] [Google Scholar]
  16. Parsons D. F., Subjeck J. R. The morphology of the polysaccharide coat of mammalian cells. Biochim Biophys Acta. 1972 Feb 14;265(1):85–113. doi: 10.1016/0304-4157(72)90020-2. [DOI] [PubMed] [Google Scholar]
  17. SZEWCZUK A., BARANOWSKI T. PURIFICATION AND PROPERTIES OF GAMMA-GLUTAMYL TRANSPEPTIDASE FROM BEEF KIDNEY. Biochem Z. 1963;338:317–329. [PubMed] [Google Scholar]
  18. Wacker H., Lehky P., Fischer E. H., Stein E. A. Physical and chemical characterization of pig kidney particulate aminopeptidase. Helv Chim Acta. 1971;54(2):473–485. doi: 10.1002/hlca.19710540206. [DOI] [PubMed] [Google Scholar]
  19. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  20. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  21. Zacharius R. M., Zell T. E., Morrison J. H., Woodlock J. J. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem. 1969 Jul;30(1):148–152. doi: 10.1016/0003-2697(69)90383-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES