Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Mar;80(5):1169–1173. doi: 10.1073/pnas.80.5.1169

Identification and localization of amino acid substitutions between two phenobarbital-inducible rat hepatic microsomal cytochromes P-450 by micro sequence analyses.

P M Yuan, D E Ryan, W Levin, J E Shively
PMCID: PMC393555  PMID: 6572377

Abstract

Two isozymes of rat liver microsomal cytochrome P-450--P-450b and P-450e--were compared by micro sequence analyses of their NH2 termini and tryptic fragments. These two phenobarbital-inducible hemoproteins, which are immunochemically indistinguishable with antibody against cytochrome P-450b, have extensive sequence homology. Automated Edman degradation of the native proteins revealed identical amino acids for the first 35 residues. Sequence determinations of the tryptic peptides, which constitute approximately 75% of each protein molecule, have thus far shown 10 amino acid differences between the two isozymes. Results of our amino acid sequence analyses established that two of the cDNAs, pcP-450pb1 and pcP-450pb4, reported by Fujii-Kuriyama et al. [Fujii-Kuriyama, Y., Mizukami, Y., Kamajiri, K., Sogawa, K. & Muramatsu, M. (1982) Proc. Natl. Acad. Sci. USA 79, 2793-2797] encode cytochrome P-450b whereas pcP-450pb2, a third cDNA whose nucleotide sequence differed slightly from that of the other two (six amino acid substitutions), encodes cytochrome P-450e. In addition to establishing the identity of these cloned cDNAs we provide direct evidence for seven additional amino acid differences between cytochromes P-450b and P-450e that occur beyond the region (Arg358) encoded by the cloned cDNA for cytochrome P-450e. Together, the amino acid sequences determined by micro sequence analysis and recombinant DNA techniques reveal 13 amino acid differences between these two isozymes. This report highlights the complementary nature of two different molecular approaches to elucidation of the amino acid sequences of isozymes with extensive structural homology.

Full text

PDF
1170

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-Nun S., Kreibich G., Adesnik M., Alterman L., Negishi M., Sabatini D. D. Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc Natl Acad Sci U S A. 1980 Feb;77(2):965–969. doi: 10.1073/pnas.77.2.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Botelho L. H., Ryan D. E., Levin W. Amino acid compositions and partial amino acid sequences of three highly purified forms of liver microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, phenobarbital, or 3-methylcholanthrene. J Biol Chem. 1979 Jul 10;254(13):5635–5640. [PubMed] [Google Scholar]
  3. Botelho L. H., Ryan D. E., Yuan P. M., Kutny R., Shively J. E., Levin W. Amino-terminal and carboxy-terminal sequence of hepatic microsomal cytochrome P-450d, a unique hemoprotein from rats treated with isosafrole. Biochemistry. 1982 Mar 16;21(6):1152–1155. doi: 10.1021/bi00535a007. [DOI] [PubMed] [Google Scholar]
  4. Fujii-Kuriyama Y., Mizukami Y., Kawajiri K., Sogawa K., Muramatsu M. Primary structure of a cytochrome P-450: coding nucleotide sequence of phenobarbital-inducible cytochrome P-450 cDNA from rat liver. Proc Natl Acad Sci U S A. 1982 May;79(9):2793–2797. doi: 10.1073/pnas.79.9.2793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hawke D., Yuan P. M., Shively J. E. Microsequence analysis of peptides and proteins. II. Separation of amino acid phenylthiohydantoin derivatives by high-performance liquid chromatography on octadecylsilane supports. Anal Biochem. 1982 Mar 1;120(2):302–311. doi: 10.1016/0003-2697(82)90351-7. [DOI] [PubMed] [Google Scholar]
  6. Hunkapiller M. W., Hood L. E. Direct microsequence analysis of polypeptides using an improved sequenator, a nonprotein carrier (polybrene), and high pressure liquid chromatography. Biochemistry. 1978 May 30;17(11):2124–2133. doi: 10.1021/bi00604a016. [DOI] [PubMed] [Google Scholar]
  7. Lang M. A., Nebert D. W. Structural gene products of the Ah locus. Evidence for many unique P-450-mediated monooxygenase activities reconstituted from 3-methylcholanthrene-treated C57BL/6N mouse liver microsomes. J Biol Chem. 1981 Dec 10;256(23):12058–12067. [PubMed] [Google Scholar]
  8. Negishi M., Swan D. C., Enquist L. W., Nebert D. W. Isolation and characterization of a cloned DNA sequence associated with the murine Ah locus and a 3-methylcholanthrene-induced form of cytochrome P-450. Proc Natl Acad Sci U S A. 1981 Feb;78(2):800–804. doi: 10.1073/pnas.78.2.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ozols J., Heinemann F. S., Johnson E. F. Amino acid sequence of an analogous peptide from two forms of cytochrome P-450. J Biol Chem. 1981 Nov 25;256(22):11405–11408. [PubMed] [Google Scholar]
  10. Ryan D. E., Thomas P. E., Levin W. Purification of characterization of a minor form of hepatic microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls. Arch Biochem Biophys. 1982 Jun;216(1):272–288. doi: 10.1016/0003-9861(82)90212-0. [DOI] [PubMed] [Google Scholar]
  11. Shively J. E., Hawke D., Jones B. N. Microsequence analysis of peptides and proteins. III. Artifacts and the effects of impurities on analysis. Anal Biochem. 1982 Mar 1;120(2):312–312. doi: 10.1016/0003-2697(82)90352-9. [DOI] [PubMed] [Google Scholar]
  12. Shively J. E. Sequence determinations of proteins and peptides at the nanomole and subnanomole level with a modified spinning cup sequenator. Methods Enzymol. 1981;79(Pt B):31–48. doi: 10.1016/s0076-6879(81)79011-6. [DOI] [PubMed] [Google Scholar]
  13. Vlasuk G. P., Ghrayeb J., Ryan D. E., Reik L., Thomas P. E., Levin W., Walz F. G., Jr Multiplicity strain differences, and topology of phenobarbital-induced cytochromes P-450 in rat liver microsomes. Biochemistry. 1982 Feb 16;21(4):789–798. doi: 10.1021/bi00533a033. [DOI] [PubMed] [Google Scholar]
  14. Walz F. G., Jr, Vlasuk G. P., Omiecinski C. J., Bresnick E., Thomas P. E., Ryan D. E., Levin W. Multiple, immunoidentical forms of phenobarbital-induced rat liver cytochromes P-450 are encoded by different mRNAs. J Biol Chem. 1982 Apr 25;257(8):4023–4026. [PubMed] [Google Scholar]
  15. Wittmann-Liebold B. Amino acid sequence studies on ten ribosomal proteins of Escherichia coli with an improved sequenator equipped with an automatic conversion device. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1415–1431. doi: 10.1515/bchm2.1973.354.2.1415. [DOI] [PubMed] [Google Scholar]
  16. Yang C. Y., Pauly E., Kratzin H., Hilschmann N. Chromatographie und Rechromatographie in der Hochdruckflüssigkeitschromatographie von Peptidgemischen. Die vollständige Primärstruktur einer Immunglobulin L-Kette vom kappa-Typ, Subgruppe I (Bence-Jones-Protein Den). Hoppe Seylers Z Physiol Chem. 1981 Aug;362(8):1131–1146. [PubMed] [Google Scholar]
  17. Yuan P. M., Pande H., Clark B. R., Shively J. E. Microsequence analysis of peptides and proteins. I. Preparation of samples by reverse-phase liquid chromatography. Anal Biochem. 1982 Mar 1;120(2):289–301. doi: 10.1016/0003-2697(82)90350-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES