Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1973 Dec;70(12 Pt 1-2):3802–3805. doi: 10.1073/pnas.70.12.3802

Interrelationship Between Adenylate Cyclase Activity, Adenosine 3′:5′ Cyclic Monophosphate Phosphodiesterase Activity, Adenosine 3′:5′ Cyclic Monophosphate Levels, and Growth of Cells in Culture

Wayne B Anderson 1, Thomas R Russell 1, Richard A Carchman 1,*, Ira Pastan 1
PMCID: PMC427332  PMID: 4359490

Abstract

To investigate how cell population density influences the intracellular concentration of cyclic AMP we have measured adenylate cyclase and cyclic AMP phosphodiesterase activities and cyclic AMP levels at various stages of cell density in normal rat-kidney (NRK) cells, which exhibit contact-inhibition of growth, and in normal chick-embryo fibroblasts (CEF), which do not show contact inhibition of growth under our conditions. Until NRK cells reach confluency, both activities increase with increasing cell population and cyclic AMP levels are low. As NRK cells reach confluency, cyclic AMP phosphodiesterase activity decreases somewhat whereas adenylate cyclase activity continues to rise. This increase in synthetic ability is accompanied by the increase in cyclic AMP levels which occurs in these cells at confluency. In CEF grown in 5% serum where density-dependent inhibition of growth is not observed, both adenylate cyclase and cyclic AMP phosphodiesterase activities increase proportionately with increasing cell population density. No significant alteration occurs in the ratio between these two enzyme activities and no change is observed in cyclic AMP levels.

The NaF-stimulated activity in NRK cells increases with increasing cell density until the cells reach confluency; thereafter the NaF-stimulated activity remains constant. In contrast, the NaF-stimulated activity observed in CEF does not vary appreciably between light and heavy density.

The observed changes in the enzymes of cyclic AMP metabolism accurately reflect the changes in cyclic AMP concentration as a function of cell population density. The data indicate that these two enzyme activities respond to increasing cell density to elicit a rise in intracellular cyclic AMP levels. The elevated cyclic AMP levels are thought to be involved in the regulation of cellular growth rate and the mediation of contact inhibition of growth.

Keywords: contact inhibition of growth, NRK cells, CEF

Full text

PDF
3802

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M. Contact-dependent behavior of normal cells and the possible significance of surface changes in virus-induced transformation. Cold Spring Harb Symp Quant Biol. 1962;27:427–431. doi: 10.1101/sqb.1962.027.001.040. [DOI] [PubMed] [Google Scholar]
  2. Anderson W. B., Johnson G. S., Pastan I. Transformation of chick-embryo fibroblasts by wild-type and temperature-sensitive Rous sarcoma virus alters adenylate cyclase activity. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1055–1059. doi: 10.1073/pnas.70.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beavo J. A., Hardman J. G., Sutherland E. W. Hydrolysis of cyclic guanosine and adenosine 3',5'-monophosphates by rat and bovine tissues. J Biol Chem. 1970 Nov 10;245(21):5649–5655. [PubMed] [Google Scholar]
  4. Burger M. M., Bombik B. M., Breckenridge B. M., Sheppard J. R. Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nat New Biol. 1972 Oct 11;239(93):161–163. doi: 10.1038/newbio239161a0. [DOI] [PubMed] [Google Scholar]
  5. Burger M. M. Proteolytic enzymes initiating cell division and escape from contact inhibition of growth. Nature. 1970 Jul 11;227(5254):170–171. doi: 10.1038/227170a0. [DOI] [PubMed] [Google Scholar]
  6. D'Armiento M., Johnson G. S., Pastan I. Cyclic AMP and growth of fibroblasts: effect of environmental pH. Nat New Biol. 1973 Mar 21;242(116):78–80. doi: 10.1038/newbio242078a0. [DOI] [PubMed] [Google Scholar]
  7. D'Armiento M., Johnson G. S., Pastan I. Regulation of adenosine 3',5'-cyclic monophosphate phosphodiesterase activity in fibroblasts by intracellular concentrations of cyclic adenosine monophosphate (3T3-dibutyryl cyclic AMP-SV40-transformed cells-michaelis constants-L cells-prostaglandin E 1 ). Proc Natl Acad Sci U S A. 1972 Feb;69(2):459–462. doi: 10.1073/pnas.69.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heidrick M. L., Ryan W. L. Adenosine 3',5'-cyclic monophosphate and contact inhibition. Cancer Res. 1971 Sep;31(9):1313–1315. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Makman M. H. Conditions leading to enhanced response to glucagon, epinephrine, or prostaglandins by adenylate cyclase of normal and malignant cultured cells. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2127–2130. doi: 10.1073/pnas.68.9.2127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nakata Y., Bader J. P. Studies on the fixation and development of cellular transformation by Rous sarcoma virus. Virology. 1968 Nov;36(3):401–410. doi: 10.1016/0042-6822(68)90165-7. [DOI] [PubMed] [Google Scholar]
  12. Otten J., Johnson G. S., Pastan I. Cyclic AMP levels in fibroblasts: relationship to growth rate and contact inhibition of growth. Biochem Biophys Res Commun. 1971 Sep;44(5):1192–1198. doi: 10.1016/s0006-291x(71)80212-7. [DOI] [PubMed] [Google Scholar]
  13. Otten J., Johnson G. S., Pastan I. Regulation of cell growth by cyclic adenosine 3',5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic adenosine 3',5'-monophosphate levels in fibroblasts. J Biol Chem. 1972 Nov 10;247(21):7082–7087. [PubMed] [Google Scholar]
  14. Rosen O. M. Preparation and properties of a cyclic 3',5'-nucleotide phosphodiesterase isolated from frog erythrocytes. Arch Biochem Biophys. 1970 Apr;137(2):435–441. doi: 10.1016/0003-9861(70)90460-1. [DOI] [PubMed] [Google Scholar]
  15. Russell T. R., Terasaki W. L., Appleman M. M. Separate phosphodiesterases for the hydrolysis of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in rat liver. J Biol Chem. 1973 Feb 25;248(4):1334–1340. [PubMed] [Google Scholar]
  16. Russell T., Pastan I. Plasma membrane cyclic adenosine 3':5'-monophosphate phosphodiesterase of cultured cells and its modification after trypsin treatment of intact cells. J Biol Chem. 1973 Aug 25;248(16):5835–5840. [PubMed] [Google Scholar]
  17. Sefton B. M., Rubin H. Release from density dependent growth inhibition by proteolytic enzymes. Nature. 1970 Aug 22;227(5260):843–845. doi: 10.1038/227843a0. [DOI] [PubMed] [Google Scholar]
  18. Sheppard J. R. Difference in the cyclic adenosine 3',5'-monophosphate levels in normal and transformed cells. Nat New Biol. 1972 Mar 1;236(61):14–16. doi: 10.1038/newbio236014a0. [DOI] [PubMed] [Google Scholar]
  19. Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
  20. Stoker M. G., Rubin H. Density dependent inhibition of cell growth in culture. Nature. 1967 Jul 8;215(5097):171–172. doi: 10.1038/215171a0. [DOI] [PubMed] [Google Scholar]
  21. Temin H. M. Studies on carcinogenesis by avian sarcoma viruses. VI. Differential multiplication of uninfected and of converted cells in response to insulin. J Cell Physiol. 1967 Jun;69(3):377–384. doi: 10.1002/jcp.1040690314. [DOI] [PubMed] [Google Scholar]
  22. Thompson W. J., Appleman M. M. Characterization of cyclic nucleotide phosphodiesterases of rat tissues. J Biol Chem. 1971 May 25;246(10):3145–3150. [PubMed] [Google Scholar]
  23. Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
  24. Todaro G. J., Lazar G. K., Green H. The initiation of cell division in a contact-inhibited mammalian cell line. J Cell Physiol. 1965 Dec;66(3):325–333. doi: 10.1002/jcp.1030660310. [DOI] [PubMed] [Google Scholar]
  25. Willingham M. C., Johnson G. S., Pastan I. Control of DNA synthesis and mitosis in 3T3 cells by cyclic AMP. Biochem Biophys Res Commun. 1972 Aug 21;48(4):743–748. doi: 10.1016/0006-291x(72)90669-9. [DOI] [PubMed] [Google Scholar]
  26. Zacchello F., Benson P. F., Giannelli F., McGuire M. Induction of adenylate cyclase activity in cultured human fibroblasts during increasing cell population density. Biochem J. 1972 Feb;126(3):27P–27P. doi: 10.1042/bj1260027pa. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES